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FLRW cosmology with scalar matter

Definition

An n-dimensional scalar triple is an ordered system (M,G,Φ), where:

(M,G) is a connected and borderless Riemannian n-manifold (called
scalar manifold)

Φ ∈ C∞(M,R) is a smooth function (called scalar potential).

Assumptions

1 (M,G) is complete (this ensures conservation of energy)

2 Φ > 0 on M (this avoids certain technical problems but can be relaxed)

Each scalar triple defines a cosmological model:

SM,G,Φ[g , ϕ] =

∫
R4

d4x
√
|g |
[
M2

2
R(g)− 1

2
Trgϕ

∗(G)− Φ ◦ ϕ
]

.

Define the rescaled Planck mass through M0
def.
=
√

2
3
M, where M is the

reduced Planck mass. Take g to describe a simply-connected and spatially flat
FLRW universe:

ds2
g := −dt2 + a2(t)d~x2 (x0 = t , ~x = (x1, x2, x3) , a(t) > 0 ∀t)

and ϕ to depend only on the cosmological time ϕ = ϕ(t).
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The cosmological equations and geometric dynamical system

Define the Hubble parameter through H(t)
def.
= ȧ(t)

a(t)
. When H > 0, the

equations of motion are equivalent with the cosmological equation:

∇t ϕ̇(t) +
1

M0

[
||ϕ̇(t)||2G + 2Φ(ϕ(t))

]1/2

ϕ̇(t) + (gradGΦ)(ϕ(t)) = 0 ,

together with the condition

H(t) = Hϕ(t)
def.
=

1

3M0

[
||ϕ̇(t)||2G + 2Φ(ϕ(t))

]1/2

=
1

3M0
H(ϕ̇(t)) ,

where the rescaled Hubble function H : TM→ R>0 is defined through:

H(u)
def.
=
√
||u||2 + 2Φ(π(u)) ∀u ∈ TM

and π : TM→M is the bundle projection.

The solutions ϕ : I →M of the cosmological equation (where I is a
non-degenerate interval) are called cosmological curves.

The cosmological equation defines an autonomous and dissipative geometric
dynamical system on TM. The flow Π : D → TM (with D ⊂ R× TM) of
this dynamical system is called cosmological flow.
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Main ideas and results

Main idea

We study the cosmological dynamical system using ideas inspired by the
Wilsonian theory of RG flows in critical phenomena.

Main results

We introduce a dynamical RG flow for this system, which relates the UV
and IR limits. The UV and IR limit correspond to fast and slow variation
of cosmological curves (high and low frequency modes of ϕ(t))

We consider UV and IR scale expansions, which expand the cosmological
flow around its UV and IR limits. These expansions were not studied
previously in the multifield model literature.

The leading approximants of the UV and IR expansions recover the
geodesic flow of (M,G) and certain reparameterization of the gradient

flow of (M,G,V ), where V
def.
= M0

√
2Φ is called the classical effective

potential of the model.

We define UV and IR cosmological universality classes, which allow for
natural classifications of multifield models.

IR cosmological universality classes depend only on the conformal
equivalence class of (M,G,V ).
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Applications

Some applications

We show that two-field models whose scalar field metric has constant
Gaussian curvature are infrared universal. In particular, generalized
α-attractor models are IR universal among hyperbolizable two-field models.

We study the “phases” arising in IR universality classes of tame
hyperbolizable two field models, characterizing all of them explicitly.

The IR phases arising from non-plane ends are qualitatively different from
those of models based on the Poincare disk.
The phases associated to Freudenthal ends of the scalar manifold have
exotic behavior different from that of hyperbolic dynamical systems.
We compare the first order IR approximation for such models with
numerical studies.
Cusp ends of hyperbolic surfaces are particularly interesting, leading to
highly complex fast turn cosmological curves that are not well-approximated
by the first order of the IR expansion.
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The similarity group

Multifield cosmological models admit a universal two-parameter group of
similarities, which relate the cosmological curves of models with the same
target manifold M but different parameters (M0,G,Φ).

Definition

Let ε > 0. The ε-scale transform of a curve ϕ : I →M is the curve
ϕε : Iε →M defined through:

Iε
def.
= εI = {εt|t ∈ I} , ϕε(t)

def.
= ϕ(t/ε) ∀t ∈ Iε .

The cosmological equation is invariant under:

Parameter homotheties:

G → λG , Φ→ λΦ , M0 → λ1/2M0 (λ > 0)

Scale similarities:

ϕ→ ϕε , Φ→ Φε
def.
= Φ/ε2 (ε > 0) .

Definition

The RG similarity is the composition of the parameter homothety at parameter
λ = ε2 with the scale similarity at parameter ε:

ϕ→ ϕε , M0 → εM0 , G → ε2G , Φ→ Φ (ε > 0) .
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RG transformations and the RG flow

The time t cosmological flow of the model with parameters (εM0, ε
2G,Φ)

coincides with the time t/ε flow of the model with parameters (M0,G,Φ).
Hence the IR and UV limits of the latter can be described equivalently by
taking ε to zero and infinity in the former. The RG transformations:

M0 → εM0 , G → ε2G , Φ→ Φ

play a role similar to that in the theory of critical phenomena.

Main result

The RG flow of the model (M0,M,G,Φ) interpolates between the geodesic
flow of (M,G) (which is recovered in the UV limit ε→∞) and a
reparameterization of the gradient flow of the classical effective potential

V
def.
= M0

√
2Φ (which is recovered in the IR limit ε→ 0).

A Riemannian homothety line on M is a one-dimensional linear subspace
L ⊂ T2(M) = Γ(M, Sym2(M)). Its elements positively-homothetic to G form
an open half-line L+ ⊂ L. The cosmological homothety plane defined by L is

the set Π(M, L)
def.
= R× L ⊂ R× T2(M), which contains the cosmological

homothety cone C(M, L)
def.
= R+ ⊕ L+. The cosmological RG action on

C(M, L) is the R>0 action defined through:

ρRG(ε)(M0,G)
def.
= (εM0, ε

2G) ∀(M0,G) ∈ C(M, L) ∀ε > 0 .
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The cosmological RG flow

Setting ε = eλ with λ ∈ R, this action describes the flow on the homothety
cone of the Euler vector field EL defined through:

EL(M0,G)
def.
= M0 ⊕ 2G ∈ Π(M,G) ∀(M0,G) ∈ C(M, L) .

This flow is called the cosmological RG flow of (M, L). Choosing a reference
metric G1 ∈ L+ induces coordinates w1,w2 on C(M, L) given by:

M0 = w1 , G = w2G1 ,

which identify Π(M, L) and with R2 and C(M, L) with the first quadrant.
Then ρRG identifies with the action:

ρRG(ε)(w1,w2) = (εw1, ε
2w2) ∀ε > 0

and EL identifies with the vector field E on R2
>0 given by:

E(w1,w2) = (w1, 2w2) ∀w1,w2 > 0.

The integral curves of the RG flow identify with:

w1(λ) = eλw1(0) , w2(λ) = e2λw2(0) .

The limit λ→ +∞ recovers the UV limit ε→ +∞ while λ→ −∞ corresponds
to the IR limit ε→ 0. These correspond to the fixed points of the RG flow on
the one-point compactification of the homothety cone, which are the apex of
the cone and the point at infinity.

Calin Lazaroiu
Dynamical RG flows and universality in classical multifield cosmological models 9/33



The cosmological RG flow
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Figure: Integral curves of the RG flow on the homothety cone and on its one-point
compactification. In the second figure we identified the compactification of the
homothety plane with the unit sphere by stereographic projection. The RG flow has
fixed points at (φ, θ) = (π, 0) (the red dot) and (φ, θ) = (0, π

2
) (the blue dot), which

correspond respectively to the apex of the homothety cone and its point at infinity, i.e.
to the south and north poles of the sphere. These fixed points give the IR limit (red
dot) and the UV limit (blue dot).
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The rescaled cosmological equation

A curve ϕ : I →M satisfies the cosmological equation of the model
(M0,M,G,Φ) iff ϕε satisfies the ε-rescaled cosmological equation:

ε2∇t
dϕε(t)

dt
+
ε

M0

[
ε2
∥∥∥dϕε(t)

dt

∥∥∥2

G
+ 2Φ(ϕε(t))

]1/2
dϕε(t)

dt
+(gradGΦ)(ϕε(t)) = 0 .

Dividing by ε2, the latter is equivalent with:

∇t
dϕε(t)

dt
+

1

M0

[∥∥∥dϕε(t)

dt

∥∥∥2

G
+ 2Φε(ϕε(t))

]1/2
dϕε(t)

dt
+(gradGΦε)(ϕε(t)) = 0 ,

where Φε
def.
= Φ/ε2. Hence ϕ satisfies the cosmological equation of the scalar

triple (M,G,Φ) iff ϕε satisfies the cosmological equation of the scalar triple
(M,G,Φε).

Remark

The UV limit ε→∞ amounts to taking the overall scale of Φ to zero, while
the IR limit ε→ 0 amounts to taking the overall scale of Φ to infinity.
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The scale expansions

The UV expansion. When ε� 1, expand ϕε in positive powers of 1
ε2 . Then

ϕ(t)
def.
= ϕε(εt) is a solution of the cosmological equation which is expanded in

non-negative powers of Φ. This amounts to treating Φ as small, Taylor
expanding the reduced Hubble function H =

√
||u||2 + 2Φ(π(u)) as:

H(u) = ||u||G

[
1 +

2Φ(π(u))

||u||2G

]1/2

= ||u||G

[
1 +

Φ(π(u))

||u||2G
−

1

2

(
Φ(π(u))

||u||2G

)2

+ . . .

]
and seeking solutions ϕ of the cosmological equation expanded in powers of Φ.

The IR expansion. When ε� 1, expand ϕε in positive powers of ε.
Equivalently, expand ϕ(t) in powers of 1√

2Φ
. This amounts to treating Φ as

large and expanding the cosmological equation as:

1√
2Φ(ϕ(t))

∇t ϕ̇(t)+
1

M0

1 +

(
||ϕ̇(t)||2G√

2Φ(ϕ(t))

)2

−
1

8

(
||ϕ̇(t)||G√

2Φ(ϕ(t))

)4

+ . . .

1/2

ϕ̇(t)+(gradG
√

2Φ)(ϕ(t)) = 0

Then one seeks solutions expanded in powers of 1√
2Φ

.

Remark

The small expansion parameter multiplies the highest order term in the last
equation. The first order approximant ϕIR is obtained by solving a first order
ODE, hence the first IR approximant of the cosmological flow is confined to a
closed submanifold of TM.
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The leading IR approximant

To leading order in the IR expansion, ϕ is approximated by the solution ϕIR of
the equation:

dϕIR(t)

dt
+ (gradGV )(ϕIR(t)) = 0

which satisfies:
ϕIR(0) = ϕ(0) .

Consider the gradient flow shell

GradGV
def.
= graph(−gradGV ) = {u ∈ TM|u = −(gradGV )(π(u))} ⊂ TM .

of the effective scalar triple (M,G,V ).

Proposition

The cosmological flow Π : D →M of the model is approximated to first order
of the IR expansion by the map ΠIR : DV → GradGV defined through:

ΠIR(t, u)
def.
= −(gradGV )(ΠV (t, π(u)))

where ΠV : DV →M is the gradient flow of the effective scalar triple
(M,G,V ), whose maximal domain of definition we denote by DV ⊂ R×M.
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Infrared optimal cosmological curves

The first order IR approximation of a cosmological curve ϕ is most precise
when |t| � 1 for those cosmological curves which satisfy ϕ̇(0) ∈ GradGV .

Definition

A cosmological curve ϕ is called infrared optimal if its orbit meets the gradient
flow shell GradGV of the effective scalar triple (M,G,V ).

Suppose that ϕ : I →M is an infrared optimal cosmological curve and let
t0 ∈ I be such that ϕ̇(t0) = −(gradGV )(ϕ(t0)). Shifting t by a constant we
can assume that t0 = 0 without generality. Then the first order IR approximant
of ϕ satisfies ϕIR(0) = ϕ(0) and ϕ̇IR(0) = ϕ̇(0).

Thus ϕIR osculates in first order to ϕ at t = 0 and hence approximates ϕ to
first order in t for |t| � 1. Notice that the covariant accelerations of ϕ and
ϕIR need not agree at t = 0 and hence the approximation need not hold to
second order in t.

Remark

One can work out the consistency conditions of the leading IR approximation.
This approximation implies the first slow roll condition, but is far from
equivalent to it.
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Conformal invariance in the infrared

Proposition

The gradient flow of a scalar potential V defined on a Riemannian manifold
(M,G) is invariant under Weyl rescalings of the metric G up to
reparameterization of the gradient flow curves.

Definition

Two scalar triples (M1,G1,V1) and (M2,G2,V2) are called conformally
equivalent if there exists a smooth conformal diffeomorphism
f : (M1,G1)→ (M2,G2) such that V1 = V2 ◦ f . In this case, f is called a
(smooth) conformal equivalence between the two triples. A conformal
automorphism of a scalar triple (M,G,V ) is a conformal equivalence from
(M,G,V ) to itself.

Proposition

The gradient flows of conformally-equivalent scalar triples are smoothly
topologically equivalent.
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IR universality classes

Definition

Consider two scalar triples (M1,G1,V1) and (M2,G2,V2). A diffeomorphism
f : (M1,G1,V1)→ (M2,G2,V2) is called a gradient equivalence if:

f](Ω−1gradG1
V1) = gradG2

V2

for some positive smooth function Ω :M1 → R>0. The two scalar triples are
called gradient equivalent if there exists a gradient equivalence between them.

Example

A conformal equivalence of scalar triples f : (M1,G1,V1)→ (M2,G2,V2) is a
gradient equivalence.

Definition

Consider two classical cosmological models parameterized by

Mi = (M0i ,Mi ,Gi ,Φi ) and let Vi
def.
= M0i

√
2Φi (i = 1, 2). The models are

called IR equivalent and we write M1 ∼IR M2 if there exists a smooth gradient
equivalence

f : (M1,G1,V1)→ (M2,G2,V2) .

The equivalence classes of ∼IR are called IR cosmological universality classes.
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The case of two-field models

Theorem (Poincaré)

The Weyl equivalence class of any Riemannian metric G on a borderless
connected surface Σ contains a unique complete metric G (called the
uniformizing metric of G) of constant Gaussian curvature K = −1, 0 or +1.

The case K = −1 is generic – then G (and its conformal class) is called
hyperbolizable and G is called the hyperbolization of G. The cases K = +1
and K = 0 occur only for seven topologies, as follows:

When K = +1, the surface Σ must be diffeomorphic with the 2-sphere S2

or with the real projective plane RP2 ' S2/Z2. Both of these surfaces
admit a unique metric of unit Gaussian curvature.

When K = 0, the surface Σ must be diffeomorphic with the 2-torus T2,
the Klein bottle K2 = RP2 ×RP2 ' T2/Z2, the open annulus A2 (which is
diffeomorphic with the open cylinder and with the twice punctured
sphere), the open Möbius strip M2 ' A2/Z2 (which is diffeomorphic with
the once-punctured real projective plane) or with the plane R2.

For the remaining topologies, any metric G defined on Σ is hyperbolizable. The
plane R2, the open annulus A2 and the open Möbius strip M2 are the only
three surfaces which admit two types of uniformizing metrics, namely a
Riemannian metric defined on one of these surfaces is uniformized either by a
complete flat metric or by a hyperbolic metric depending on its conformal class.
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The case of two-field models

Proposition

Up to (curve-dependent) increasing reparameterization, the IR behavior of the
cosmological flow of a two-field model with scalar triple (Σ,G,Φ) and rescaled
Planck mass M0 is described by the gradient flow of the scalar triple (Σ,G ,V ),

where G is the uniformizing metric of G and V
def.
= M0

√
2Φ is the classical

effective scalar potential of the model.

Two-field models whose complete scalar manifold metric G has constant
negative curvature are called generalized two-field α-attractor models.

Corollary

Generalized two-field α-attractor models are IR universal among two-field
cosmological models with hyperbolizable target manifold.

This gives a conceptual reason to single out generalized two-field α-attractor
models for special study.
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Tame hyperbolizable two-field models

Consider a hyperbolizable model parameterized by (M0,Σ,G,Φ), where Σ is a
connected borderless surface. Let G be the hyperbolization of G and

V
def.
= M0

√
2Φ. Let Σ̂ be the end compactification of Σ, where each point of

the set:
Ends(Σ)

def.
= Σ̂ \ Σ

corresponds to a Freudenthal end.

Definition

A hyperbolizable two-dimensional scalar triple (Σ,G,Φ) is called tame if it
satisfies the following conditions:

1 Σ is oriented and topologically finite in the sense that its fundamental
group π1(Σ) is finitely-generated. This implies that Σ has finite genus and

a finite number of ends and that its end compactification Σ̂ is a compact
smooth surface. Notice that (Σ,G) need not have finite area.

2 The scalar potential Φ is globally well-behaved, i.e. Φ admits a smooth
extension Φ̂ to Σ̂. We require that Φ̂ is strictly positive on Σ̂, which
means that the limit of Φ at each end of Σ is a strictly positive number.

3 The extended potential Φ̂ is a Morse function on Σ̂ (in particular, Φ is a
Morse function on Σ).

A two-field cosmological model with tame scalar triple is called tame.

Calin Lazaroiu
Dynamical RG flows and universality in classical multifield cosmological models 19/33



Interior critical points. Critical and noncritical ends

Since Σ is topologically finite implies, the set of ends Ends(Σ) is finite. The
condition that Φ̂ is Morse implies that the set:

CritΦ̂
def.
= {c ∈ Σ̂|(dΦ̂)(c) = 0}

is finite. Since Φ̂ is strictly positive on Σ̂, the classical effective potential

V = M0

√
2Φ has smooth extension to Σ̂ given by V̂ = M0

√
2Φ̂ and we have:

CritV̂ = CritΦ̂ .

The critical points of V coincide with the interior critical points of V̂ (and Φ̂):

CritV = CritΦ = Σ ∩ CritV̂ = Σ ∩ CritΦ̂ .

Let:

Crit∞V = Crit∞Φ
def.
= Ends(Σ) ∩ CritV̂ = Ends(Σ) ∩ CritΦ̂

be the set of critical ends. We have the disjoint union decomposition:

CritV̂ = CritV t Crit∞V .

An end of Σ which is not a critical point of Φ̂ (and hence of V̂ ) is called a
noncritical end.

We denote interior critical points by c and arbitrary critical points of V̂ by c.
We denote by e the ends of Σ.
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The form of the hyperbolic metric G in the vicinity of an end

Any end e of Σ admits an open neighborhood Ue ⊂ Σ̂ diffeomorphic with a

disk such that G has a canonical form when restricted to U̇e
def.
= Ue \ {e} ⊂ Σ.

Namely, there exist semigeodesic polar coordinates (r , θ) ∈ R>0 × S1 defined on

U̇e in which:
ds2

G |U̇e = dr2 + fe(r)dθ2
,

where:

fe(r) =


sinh2(r) if e = plane end

1
(2π)2 e

2r if e = horn end

`2

(2π)2 cosh2(r) if e = funnel end of circumference ` > 0
1

(2π)2 e
−2r if e = cusp end

.

The end e corresponds to r →∞. Setting ω
def.
= 1

r
, we have:

ds2
G |U̇e =

dω2

ω4
+ fe(1/ω)dθ2

,

with:
fe(1/ω) = c̃ee

2εe
ω

[
1 + O

(
e−

2
ω

)]
for ω � 1 ,

where:

c̃e =



1
4 if e = plane end

1
(2π)2 if e = horn end

`2

(4π)2 if e = funnel end of circumference ` > 0
1

(2π)2 if e = cusp end

εe =

{
+1 if e = flaring (i.e. plane, horn or funnel) end
−1 if e = cusp end
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Principal canonical coordinates centered at an end

Consider canonical Cartesian coordinates centered at an end e, which are
defined on Ue by:

x + iy
def.
=

1

r
e iθ .

The canonical polar coordinates (ω, θ) centered at e are defined through:

ω
def.
= |x + iy | =

1

r

In such coordinates, the end e corresponds to ω = 0, i.e. (x , y) = (0, 0).

Definition

A canonical Cartesian coordinate system (x , y) for (Σ,G) centered at the
critical end e is called principal for V if the tangent vectors εx = ∂

∂x

∣∣
e

and

εy = ∂
∂y

∣∣
e

form a principal basis for V at e.

In a principal coordinate system (x , y) centered at e, the Taylor expansion of V̂
at e has the form:

V̂ (x , y) = V̂ (e) +
1

2
ω2
[
λ1(e) cos2 θ+λ2(e) sin2 θ

]
+O(ω3) ,

where λ1(e) and λ2(e) are the principal values of V at e and ω =
√

x2 + y 2,
θ = arg(x + iy).
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Critical modulus and characteristic signs

Definition

The critical modulus βe of (Σ,G ,V ) at the critical end e is the ratio:

βe
def.
=

λ1(e)

λ2(e)
∈ [−1, 1] \ {0} ,

where λ1(e) and λ2(e) are the principal values of (Σ,G ,V ) at e. The sign
factors:

εi (e)
def.
= sign(λi (e)) ∈ {−1, 1} (i = 1, 2)

are called the characteristic signs of (Σ,G ,V ) at e. V is called circular at e if
λ1(e) = λ2(e).

Proposition

There exists a principal Cartesian canonical coordinate system (x , y) for
(Σ,G ,V ) at every critical end e. When V is circular at e, these coordinates are
determined by V and G up to an O(2) transformation. When V is not circular
at e, these coordinates are determined by V and G up to the action of the
subgroup ∆ of O(2).

When V is not circular at e (i.e. when λ1(e) 6= λ2(e)), the geodesic orbits of
(U̇e,G) given by (θ − θe) mod 2π ∈ {0, π

2
, π, 3π

2
} will be called the principal

geodesic orbits at e determined by V . These geodesic orbits correspond to the
four semi-axes defined by the principal Cartesian coordinate system (x , y)
centered at e; they have the end e as a common limit point.
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The IR phases of noncritical ends

Definition

A system of special Cartesian canonical coordinates for (Σ,G ,V ) centered at
the noncritical end e is a system of canonical Cartesian coordinates (x , y)
centered at e which satisfies the conditions:

(dV̂ )(e)(vy ) = 0 i.e. (∂y V̂ )(e) = 0

and:
(dV̂ )(e)(vx) > 0 i.e. (∂x V̂ )(e) > 0 .

Given such coordinates, we set µe
def.
= (dV̂ )(e)(vx) = (∂x V̂ )(e).

For θ 6∈ {0, π}, the unoriented gradient flow orbits are given by:

1

4
γ2

(
2εe
ω

)
= A + c̃e log | sin θ| ,

where A is an integration constant and:

γ2(v)
def.
= 1− e−v − ve−v =

∫ v

0

we−wdw (with v ∈ R)

is the lower incomplete Gamma function of order 2.
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The IR phases of noncritical ends
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Comparison with infrared optimal cosmological curves near noncritical ends
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The IR phases of critical ends

In special canonical coordinates a θ 6∈ {0, π
2
, π, 3π

2
}, the non-special unoriented

gradient flow orbits are given by:

1

4
[λ1(e)− λ2(e)]γ2

(
2εe
ω

)
= A + c̃e [λ1(e) log | sin θ| − λ2(e) log | cos θ| ] ,

where A is an integration constant.

Proposition

The unoriented orbits of the asymptotic gradient flow of (Σ,G ,V ) near a
critical end e are determined by the hyperbolic type of the end (i.e. by εe and
c̃e) and by the critical modulus βe, while the orientation of the orbits is
determined by the critical signs εi (e), which satisfy ε1(e)ε2(e) = 1.
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The IR phases of critical ends
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Figure: Critical plane end.
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Figure: Critical horn end
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The IR phases of critical ends
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Figure: Critical funnel end.
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Figure: Critical cusp end.
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Comparison with infrared optimal cosmological curves near critical ends
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Comparison with infrared optimal cosmological curves near critical ends
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Figure: Critical cusp end.
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Some numerical cosmological curves near critical cusp ends
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Figure: A numerically computed infrared optimal cosmological orbit of near a critical
cusp end e for βe = −1/2.
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Some numerical cosmological curves near critical cusp ends
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Figure: A numerically computed infrared optimal cosmological orbit near a critical

cusp end e for βe = +1/2 when the cusp end is a local minimum of V̂ .
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