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Einstein general relativity is a classical theory
Mass/energy spacetime geometry

Its quantization leads to
UV divergences which cannot be reabsorbed in a 
finite number of parameters non-renormalizable
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The coupling of gravitational interaction is

negligible quantum corrections at low energy.

At high-energies or in strong gravity
fields, theory of quantum gravity is necessary.  



1)  The swampland program 
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Are all consistent Quantum Field Theories obtainable from a 
Quantum Gravity Theory (ex. String Theory) ? 

Probably NO 
Swampland = the set of consistent QFT with no consistent 
coupling to Quantum  Gravity (Vafa,2005)

(from E. Palti, « The Swampland: Introduction and Review »,  [arXiv:1903.06239 
[hep-th]])
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Final goal swampland program ?

Supplement rules of effective QFT with additional constraints,
which would guide Beyond the Standard Model and cosmology
constructions. 
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Why Supergravity for early cosmology ? 

- Inflation with super-Planckian field variations needs
a UV completion String Theory

- Supersymmetry crucial ingredient in String Theory, supergravity
its low-energy effective  action

E. Dudas – CNRS and E. Polytechnique + CERN-TH 
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SUGRA = SUSY + Gravity

It contains :

- gravity multiplet:        Graviton            ,   gravitino  

- « matter » fields:       (complex) Scalars ,  Weyl Fermions                    
chiral superfields

gµ⌫  µ

 i�i

<latexit sha1_base64="Pj0Q9Xkfib6FPav0yY8jnXqt3i4="></latexit>

�i

+ gauge multiplets, etc

Rarita-Schwinger,
spin 3/2



• In supergravity, the gravitino         becomes massive by
absorbing the goldstino G                                             
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 µ

<latexit sha1_base64="rXj+A4vrCWl8MJ34TE6kyt6jfhw="></latexit>

m3/2 = e
K
2 |W |and its mass is

SuperpotentialKahler potential
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The consistency of  low-energy actions  for the spin 3/2  Rarita-
Schwinger field has a long history :

• 1941: Rarita-Schwinger action
• 1969: Velo-Zwanziger pointed out potential acausal 

propagation for a charged gravitino in an e.m. background
• 1977: Deser-Zumino proved that gravitino propagation in 

minimal supergravity is causal
• 2001: Deser-Waldron proved that gravitino propagation in 

gauged supergravities is causal
......

• 2021 – Gravitino swampland conjecture, gravitino distance 
conjecture 
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History of the subject strongly suggest that usual supergravities
have no problems with gravitino propagation. 

SUSY (linearly realized): nb. bosons = nb. fermions 
SUGRA:  SUSY is a gauge symmetry, contains gravity
Nonlinear SUSY/SUGRA: nb. bosons      nb. fermions 

Inflation models in standard SUGRA’s have at least one 
complex scalar field (often several).
Recently, simple nonlinear SUSY/SUGRA models were
constructed.   More minimal inflationary models, fewer fields. 
(Antoniadis,E.D.,Ferrara&Sagnotti; Kallosh,Linde & coll, 2014-) 

Even possible to construct minimal models with only:  
graviton,  massive gravitino and inflaton (real scalar)

<latexit sha1_base64="9U9sgeuSPxNGkg4LRas/PEfchLY="></latexit>
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Simplest nonlinear SUSY’s: constrained superfields.
Example:  
• Volkov-Akulov action can be constructed in superspace

(Rocek,78) introducing a constrained, nilpotent superfield
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whose solution is no fundamental scalar

The full VA action is

E. Dudas – CNRS and E. Polytechnique + CERN-TH  

Superspace fermionic
coordinate

auxiliary field



Analogy with the sigma model : 

- O(N) linear sigma model

has 1 massive (« Higgs ») and N-1 goldstone bosons,                  
versus the 

- O(N)/ O(N-1) nonlinear sigma model (                 limit) 

+ constraint ,  describes self-interactions of 
the N-1 goldstone’s.   O(N) symmetry is nonlinearly realized. 
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L = @m�a@m�a

�a�a = v2
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The talk deals with the propagation (« speed of sound »      ) 
of gravitino in SUGRA, (mostly) during inflation.

Normally

<latexit sha1_base64="lv+BHs6dgBBh3u1JXjbA63q46H0="></latexit>cs

<latexit sha1_base64="rIj7ZJWWK969/KCNA/XejXRkiK4="></latexit>

0 < cs  1
Recently, two potential problematic behaviours were discussed:

• at particular points on the inflationary trajectory
<latexit sha1_base64="Pi1OXI+5DRaiMiiA0FGhuialri0="></latexit>

cs = 0
Large (catastrophic) production of gravitinos 

•
<latexit sha1_base64="ytzBQ/dvma4XjDi6NkpfK50s+VA="></latexit>

cs > 1 acausal behaviour at particular points on the  
inflationary trajectory in specific SUGRA models

2) Gravitino sound speed in supergravity (SUGRA)
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<latexit sha1_base64="vZ1p3ME+UP+XUIss+GG6yYk1sm8="></latexit>

!2 = c2sk
2 + a2m2

The sound speed          is defined from the dispersion relation<latexit sha1_base64="AEHqVk5l11uFoX1fouD1sx5f85A="></latexit>cs

The transverse spin 3/2 component in a FRW background 
has a standard dispersion relation with

<latexit sha1_base64="peB2NTdmP1LAFlKSaZa0hxtZCYc=">AAADEXicjVHLTttAFD1xaUvpg7RdshkRkEBFwQlS200lVDYsWASJECQM1thMwih+aTyuhKJ8Rf+EHbuq235AyxJW9C96Z5hItFEFY9k+c+49Z+beGxWJLLXvX9a8RzOPnzydfTb3/MXLV/P112/2y7xSsejGeZKrg4iXIpGZ6GqpE3FQKMHTKBG9aLhl4r0vQpUyz/b0WSGOUj7IZF/GXBMV1neW2Eow4GnKj30WFFxpyZPQZ++YZI6XbBhKIjhLw9HGenu8yoJOKS1eGwVRnw3HY/aJ+UthveE3fbvYNGg50IBbnbz+EwFOkCNGhRQCGTThBBwlPYdowUdB3BFGxClC0sYFxpgjbUVZgjI4sUP6Dmh36NiM9saztOqYTknoVaRkWCZNTnmKsDmN2XhlnQ37P++R9TR3O6N/5LxSYjVOib1PN8l8qM7UotHHR1uDpJoKy5jqYudS2a6Ym7M7VWlyKIgz+ITiinBslZM+M6spbe2mt9zGb2ymYc0+drkVfptb0oBb/45zGuy3m633zY3ddmPzsxv1LBawiBWa5wdsYhsddMn7HL9whWvvq3fhffO+36Z6Nad5i7+W9+MPGcipjA==</latexit>

(�0@0 + i�iki + am3/2) 3/2,k = 0
scale factor

<latexit sha1_base64="plpKHMaXJaD/8py+e2f0d/aedik="></latexit>

cs = 1
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(�0@0 � i�iki
↵1+�0↵2

↵ + am3/2) 1/2,k = 0

The longitudinal (goldstino) component satisfies a more 
involved equation

with specific functions of scalar fields in 
SUGRA,    with the sound speed depending generically on 
time  

<latexit sha1_base64="++1WIY4+H2gXMjihlPQROi8OkMQ="></latexit>

c2s = |↵1|2+|↵2|2
↵2

<latexit sha1_base64="5cqi7EDewdU9vKvCcjczFdf3g9U="></latexit>↵1,↵2,↵

<latexit sha1_base64="/tttiNSj9NEsMweESMtmmDweQiA="></latexit>

cs < 1 Slow gravitino     (Benakli,Darmé, Oz, 2014) 
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3

gravitino sound speed c2s,

c2s =

(

p− 3m2
3/2

)2

(

ρ+ 3m2
3/2

)2 +
4ṁ2

3/2
(

ρ+ 3m2
3/2

)2 , (3)

where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
Ref. [44] provides a rather compact expression for this
quantity in a supergravity model, namely

c2s = 1−
4

(|ϕ̇|2 + |F |2)2
{

|ϕ̇|2|F |2 − |ϕ̇ · F ∗|2
}

, (4)

where ϕ is the multiplet of scalar fields in the model, and
the F -term is

F i ≡ eK/2Kij∗ Dj∗W
∗ , (5)

where, using standard supergravity notation, Kij∗ is the
inverse of the Kähler metric

Kij∗ ≡
∂2K

∂ϕi ∂ϕj∗ , (6)

while

DiW ≡
∂W

∂ϕi
+
∂K

∂ϕi
W . (7)

The dot operator in Eq. (4) denotes a scalar product
with the Kähler metric (6), namely |ϕ̇|2 = ϕ̇iKij∗ ϕ̇j∗,
and analogously for the other terms. Notice that due to
the Cauchy-Schwarz type inequality |ϕ̇|2|F |2 ≥ |ϕ̇ · F ∗|2,
causality cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms
in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.

III. GRAVITINO SOUND SPEED IN SPECIFIC
MODELS

In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):

K = −
(

Φ− Φ̄
)2

2
+

S S̄

1 + m2

M2 |Φ|2
−
(

S S̄
)2

Λ2
,

W = M S +W0 . (10)

The resulting potential is extremized along the real
directions Φ = Φ̄ = φ√

2
, S = S̄ = s√

2
. The minimum of

the potential with respect to s is φ−dependent and given
by:

〈s〉φ =
Λ2

√
6
(

m2φ2

2M2 + 1
)2 +O

(

Λ4
)

. (11)

We see that, as is typical for strong stabilization, 〈s〉φ
vanishes in the limit Λ → 0. Inserting this into the po-
tential, leads to

V =
m2φ2

2
+

M2

3






1−

1
(

m2φ2

2M2 + 1
)2






Λ2 +O

(

Λ4
)

.

(12)
In both Eqs. (11) and (12), the parameter W0 has been

set to W0 = M√
3

(

1− Λ2

6 +O
(

Λ4
)

)

, so to have a vanish-

ing potential in the minimum at φ = 0. In the minimum,
the gravitino mass is given by

m3/2

∣

∣

∣

φ=0
=

M√
3
+O

(

Λ2
)

. (13)

From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)

2 appearing in

A general expression for longitudinal gravitino sound speed is

energy density

pressure time-derivative

<latexit sha1_base64="xrA8FM2raFxIcpe8YjlGIv2tGfo="></latexit>

cs = 0 is possible if               is const. and   <latexit sha1_base64="SVMO+N/+NxsbGPxjk9/7As29RSE="></latexit>m3/2

<latexit sha1_base64="CaSsIt8sW9vNsEBP0ReVz374TR4="></latexit>

p = 3m2
3/2

In this case, there would be a catastrophic production of 
gravitinos during inflation  

(Hasegawa, Terada et al, 2017;  Kolb, Long, McDonough, 2021). 
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Figure 1: Values of nk/a
3
eH

3
e = k

3
|�k|

2
/2⇡2 as a function of k for two values of m/He for helicity-3/2 and helicity-

1/2. (The helicity-3/2 results are identical to the results for a Dirac fermion.) If m/He = 0.01 then c
2
s vanishes during

the evolution (see Fig. 3) and catastrophic particle production results. If m/He = 1.0 the c
2
s does not vanish in the

evolution (but is less than unity). There is no catastrophic GPP, but particle production is enhanced over helicity-3/2 which
has c

2
s = 1. The oscillations for k & 5 can be compared to the oscillations seen in Figure 3 of Giudice, Riotto, and

Tkachev [16].

To better understand how the sound speed varies with time, we need to specify a model for the inflaton so
that ⇢(⌘) and p(⌘) can be calculated, and we must also specify how the spin-3/2 field’s mass varies with time, so
that @⌘m can be calculated. For simplicity we consider a quadratic potential, and the inflaton’s energy density
and pressure are given by

⇢ = 1
2 �̇

2 + 1
2m

2
��

2 and ⇢ = 1
2 �̇

2
�

1
2m

2
��

2
. (4.9)

Here and below “dot” denotes d/dt where t is cosmic time. The inflaton mass is related to He by m� =

2HeMPl/�e. Again, we emphasize that this is the potential that describes the oscillation of the inflaton about
its minimum after inflation, and it need not describe the inflaton potential when the scale factor was about 50
e-folds from the end of inflation when scales important for observable curvature fluctuations crossed the Hubble
radius. For the spin-3/2 field’s mass, we consider the simplest scenario first and assume that it is a constant so
that @⌘m = 0. Then it is possible for the squared sound speed (4.8) to vanish when p = 3m2

M
2
Pl.

It is easy to see that the sound speed cannot vanish during inflation: since ⇢+3p < 0 and ⇢ > 0, it follows
that p < 0 and c

2
s > 0. We study the evolution of cs(⌘) after inflation by numerically solving the inflaton’s field

equation to calculate the pressure p. In Fig. 2 we show the pressure p as as a function of a/ae, and we compare
with 3m2

M
2
Pl for several different values of the spin-3/2 field’s mass m. If the spin-3/2 field’s mass is static,

@⌘m = 0, then the sound speed cs vanishes when the pressure p equals 3m2
M

2
Pl [see Eq. (4.8)]. The blue curve

shows the pressure p (in units of H2
eM

2
Pl) and the gray-dashed lines show values of 3m2

M
2
Pl (same units) for

18

(taken from
Kolb et al, 2021)

The problem was argued to arise for                    . If the problem
is generic potential issue for low-energy SUSY models.        

<latexit sha1_base64="7DZaefV3nrZCE1RXXwVqEeyK1f4=">AAAC1HicjVHLTsJAFD3UF+ID1KWbiWDiCgsk6sIF0Q1LTOSRICFtGbChr7RTE4KsjFt/wK1+k/EP9C+8M5ZEJUanaXvm3HPuzL3XDBw7Err+mtIWFpeWV9KrmbX1jc1sbmu7GflxaPGG5Tt+2DaNiDu2xxvCFg5vByE3XNPhLXN0LuOtGx5Gtu9dinHAu64x9OyBbRmCqF4uW2Bub1I5LE/ZKauxQi+X14u6WmwelBKQR7Lqfu4FV+jDh4UYLjg8CMIODET0dFCCjoC4LibEhYRsFeeYIkPemFScFAaxI/oOaddJWI/2Mmek3Bad4tAbkpNhnzw+6ULC8jSm4rHKLNnfck9UTnm3Mf3NJJdLrMA1sX/5Zsr/+mQtAgOcqBpsqilQjKzOSrLEqivy5uxLVYIyBMRJ3Kd4SNhSzlmfmfJEqnbZW0PF35RSsnJvJdoY7/KWNODSz3HOg2a5WDoqVi7K+epZMuo0drGHA5rnMaqooY6GmvkjnvCsNbVb7U67/5RqqcSzg29Le/gAtYOTbA==</latexit>

m3/2 < H

Hubble scale
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3

gravitino sound speed c2s,

c2s =

(

p− 3m2
3/2

)2

(

ρ+ 3m2
3/2

)2 +
4ṁ2

3/2
(

ρ+ 3m2
3/2

)2 , (3)

where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
Ref. [44] provides a rather compact expression for this
quantity in a supergravity model, namely

c2s = 1−
4

(|ϕ̇|2 + |F |2)2
{

|ϕ̇|2|F |2 − |ϕ̇ · F ∗|2
}

, (4)

where ϕ is the multiplet of scalar fields in the model, and
the F -term is

F i ≡ eK/2Kij∗ Dj∗W
∗ , (5)

where, using standard supergravity notation, Kij∗ is the
inverse of the Kähler metric

Kij∗ ≡
∂2K

∂ϕi ∂ϕj∗ , (6)

while

DiW ≡
∂W

∂ϕi
+
∂K

∂ϕi
W . (7)

The dot operator in Eq. (4) denotes a scalar product
with the Kähler metric (6), namely |ϕ̇|2 = ϕ̇iKij∗ ϕ̇j∗,
and analogously for the other terms. Notice that due to
the Cauchy-Schwarz type inequality |ϕ̇|2|F |2 ≥ |ϕ̇ · F ∗|2,
causality cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms
in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.

III. GRAVITINO SOUND SPEED IN SPECIFIC
MODELS

In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):

K = −
(

Φ− Φ̄
)2

2
+

S S̄

1 + m2

M2 |Φ|2
−
(

S S̄
)2

Λ2
,

W = M S +W0 . (10)

The resulting potential is extremized along the real
directions Φ = Φ̄ = φ√

2
, S = S̄ = s√

2
. The minimum of

the potential with respect to s is φ−dependent and given
by:

〈s〉φ =
Λ2

√
6
(

m2φ2

2M2 + 1
)2 +O

(

Λ4
)

. (11)

We see that, as is typical for strong stabilization, 〈s〉φ
vanishes in the limit Λ → 0. Inserting this into the po-
tential, leads to

V =
m2φ2

2
+

M2

3






1−

1
(

m2φ2

2M2 + 1
)2






Λ2 +O

(

Λ4
)

.

(12)
In both Eqs. (11) and (12), the parameter W0 has been

set to W0 = M√
3

(

1− Λ2

6 +O
(

Λ4
)

)

, so to have a vanish-

ing potential in the minimum at φ = 0. In the minimum,
the gravitino mass is given by

m3/2

∣

∣

∣

φ=0
=

M√
3
+O

(

Λ2
)

. (13)

From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)
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where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
Ref. [44] provides a rather compact expression for this
quantity in a supergravity model, namely

c2s = 1−
4

(|ϕ̇|2 + |F |2)2
{

|ϕ̇|2|F |2 − |ϕ̇ · F ∗|2
}

, (4)

where ϕ is the multiplet of scalar fields in the model, and
the F -term is

F i ≡ eK/2Kij∗ Dj∗W
∗ , (5)

where, using standard supergravity notation, Kij∗ is the
inverse of the Kähler metric

Kij∗ ≡
∂2K

∂ϕi ∂ϕj∗ , (6)

while

DiW ≡
∂W

∂ϕi
+
∂K

∂ϕi
W . (7)

The dot operator in Eq. (4) denotes a scalar product
with the Kähler metric (6), namely |ϕ̇|2 = ϕ̇iKij∗ ϕ̇j∗,
and analogously for the other terms. Notice that due to
the Cauchy-Schwarz type inequality |ϕ̇|2|F |2 ≥ |ϕ̇ · F ∗|2,
causality cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms
in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.

III. GRAVITINO SOUND SPEED IN SPECIFIC
MODELS

In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):
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From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)
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where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
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in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.
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In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):

K = −
(

Φ− Φ̄
)2

2
+

S S̄

1 + m2

M2 |Φ|2
−
(

S S̄
)2

Λ2
,

W = M S +W0 . (10)
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From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)
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4ṁ2

3/2
(

ρ+ 3m2
3/2

)2 , (3)

where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
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and analogously for the other terms. Notice that due to
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causality cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms
in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.
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In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):
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From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)
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sound speed is by no means a generic feature of super-
gravity models. The model does not require an additional
field for supersymmetry breaking and can be written as
[70, 71]

K=−3 ln

(

S + S̄ +

(

S + S̄ − 1
)4

Λ2
+

d
(

S − S̄
)4

Λ2
−

|Φ|2

3

)

,

W=m

(

Φ2

2
−

Φ3

3
√
3

)

+ λm3 , (32)

where d is a constant of O(1), and λ sets the scale of
supersymmetry breaking.

The model admits real solutions that we parametrize
as in the previous models, Φ = Φ̄ = φ, S = S̄ = s. In
the minimum, 〈φ〉 = 0 and 〈s〉 = 1

2 . For these values the
potential vanishes, while the gravitino mass is m3/2 =
λm3.

Extremizing the potential with respect to s, with the
inflaton away from the minimum, we find

〈s〉φ =
1

2
+

φ2

2 (6λm2 + φ2)2

√
3− φ√
3 + φ

Λ2 +O
(

Λ4
)

, (33)

leading to the potential

V =
3m2φ2

(√
3 + φ

)2 +O
(

Λ2
)

. (34)

As in the previous no-scale example, φ is not canonical
and writing

φ =
√
3 tanh

(

ρ√
6

)

(35)

leads to the same potential given in Eq. (29).

We then find, using the same notation as for the pre-
vious models,

ϕ̇i =
{

φ̇, m×O
(

Λ2
)

}

,

F i =







mφ

√√
3− φ√
3 + φ

, −
m
(

3λm2 + φ2
)

2
√
3
√

3− φ2







+m×O
(

Λ2
)

. (36)

We see that ϕ̇ ·F is not suppressed, and we do not expect
a suppression in the gravitino sound speed. A direct in-
spection of the O

(

Λ0
)

term indicates that this is indeed
the case, though the full expression is not particularly

illuminating. In the
√
λm & φ, φ̇

m & 1 regime we ob-
tain

c2s ' 1−
m2φ4φ̇2

6
(

m2φ2 + φ̇2
)2 , Λ & 1 ,

√
λm & φ,

φ̇

m
& 1 .

(37)

IV. COMPLETE LINEARIZED EQUATION FOR
THE LONGITUDINAL GRAVITINO

So far, we have seen that while it is possible to find
models with cs ' 0, it is by no means a generic feature
of supergravity inflation models. Next, we point out that
even if cs = 0, one can not conclude that there is any en-
hanced production of gravitinos. We show that this is the
case by considering the equation of motion for the longi-
tudinal gravitino, as obtained in [39] and then studied in
[41].

In the unitary gauge, the dynamical variable encoding
the longitudinal gravitino is the combination θ = γiψi,
where ψ is the gravitino field. In a nontrivial back-
ground, the longitudinal gravitino is coupled to another
fermionic combination Υ at the linearized level. In a cos-
mological background, where the scalar fields depend on
time,

Υ = Kij∗

(

χi∂0ϕ
j∗ + χj∗∂0ϕ

i
)

, (38)

where the indices run over the number of chiral super-
fields in the model,

(

ϕi, χi
)

are the scalar and fermion
components of a chiral complex multiplet (where χi is
a left-handed fermion), while

(

ϕi∗ , χi∗
)

are their conju-
gates.

For simplicity, we consider the case of two chiral su-
perfields, although this can be immediately generalized
to an arbitrary number. In this case, the coupled equa-
tions for θ and Υ form a closed system. To write these
equations, we introduce the following quantities (that we
express through the scalar product defined above)

α ≡ ρ+ 3m2
3/2 = ϕ̇ · ϕ̇∗ + F · F ∗ ,

α1 ≡ p− 3m2
3/2 = ϕ̇ · ϕ̇∗ − F · F ∗ ,

α2 ≡ 2
∂

∂t

[

eK/2 W PL + eK/2 W ∗ PR

]

= 2 (ϕ̇ · F ∗ PL + ϕ̇∗ · F PR)

+eK/2

(

ϕ̇i ∂K

∂ϕi
− ϕ̇∗i ∂K

∂ϕ∗i

)

(W ∗ PR −W PL) .

(39)

In these expressions ρ and p denote, respectively, the
energy density and pressure of the background scalars,
while PL/R are the left- and right-handed chiral fermion
projection operators. These expressions considerably
simplify along real solutions for the scalar fields

real scalars : α = ϕ̇ · ϕ̇+ F · F ,

α1 = ϕ̇ · ϕ̇− F · F ,

α2 = 2 ϕ̇ · F . (40)

These expressions apply to the models considered in the
previous sections, that have real background solutions.
In the following we employ the simplified expressions
(40).

(Kallosh,Kofman,Linde, Van Proeyen,2000; Nilles,Peloso,Sorbo, 2001) 
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The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)



21

E. Dudas – CNRS and E. Polytechnique + CERN-TH  

where the « sound speed matrix » 

7

The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)

with ,  is now the key to the « slow gravitino » 
problem. 
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The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)

When ,  then

is nonsingular, leading to a nonvanishing sound speed for the 
physical eigenstates.      

<latexit sha1_base64="Wy4DGCDUkAneBf5RxjXjnc4Xwik="></latexit>
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The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)

(DGMOPV; see also Antoniadis,Benakli and Ke, 2021 ) 
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For the (large)  majority of SUGRA models we investigated , we
found no problems,                          :

- standard SUGRA models with two chiral superfields
(inflaton+SUSY breaking): general statement

- SUGRA models with nilpotent SUSY breaking field

<latexit sha1_base64="ueHCzLvz0QFbPFwvdVOosHCcO6U="></latexit>

S2 = 0
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The only models with problems we found is with the 
« orthogonal constraint » for the inflaton multiplet

7

The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)
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Only =inflaton is a dynamical degree of freedom.
, the inflatino and the auxiliary field

are determined by the constraint.  

In particular is a bilinear in fermions and does not appear
in the scalar potential :   
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Consequences:

- There is no inflatino , the gravitino sound
speed problem can reappear (model-dependent) 

- The Cauchy-Schwarz argument for                                 
not valid. We found examples with ! 

<latexit sha1_base64="P+MBQMkYrdG/OQhDPZdIujuuD3Y="></latexit>
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cs > 1

Potential pathological behaviour reminiscent of the 
swampland program !   

On the other hand, the UV origin of the orthogonal constraint is
not clear (Dall’Agata,E.D.,Farakos, 2006) 
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5)  Causality and positivity bounds
(Quentin Bonnefoy,Gabriele Casagrande & E.D.,  in progress) 

• The potential acausal behaviour concerns the longitudinal 
component of  the gravitino. 

• Gravitino equivalence theorem: at high-energy, gravitino 
longitudinal component is described by the goldstino, 
with enhanced couplings to matter.   

Natural question: is the acausality found in SUGRA captured
by the low-energy lagrangian of the goldstino coupled to 
matter, in the decoupling limit ?<latexit sha1_base64="QeFbjNVe2P0vYjVyhBtERBYclKU="></latexit>
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Yes !   The goldstino lagrangian contains a higher-derivative
operator of the form

<latexit sha1_base64="w7/9qNd3joGU+9pR0cKfezYHDi0="></latexit>
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The operator is subject to positivity constraints from dispersion 
relation arguments which enforce 

<latexit sha1_base64="jb+tR1jk5f2WMizA+Pz8YDV28mY="></latexit>

cs  1

• This implies that the subluminality condition is
independent of         , easy to check aposteriori

<latexit sha1_base64="faE+W9HNKo8wJi1z0ivqyBF6wQ0="></latexit>

MP

• We believe the issue arises due to the « elimination » of the 
auxiliary field by the orthogonal constraint, no simple physical
interpretation.  
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• Obs: SUGRA/inflation subluminality condition valid
throughout the inflationary trajectory, positivity constraints
valid only in the ground state  

SUGRA condition is stronger. 

• Maybe causality condition of goldstino propagation in time-
dependent solutions of the goldstino action is equivalent to 
the SUGRA constraint ? 
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Interesting to contemplate a « gravitino swampland conjecture » 

« In all 4d effective field theories that are low-energy limits of 
quantum gravity, at all points 
in moduli space and for all initial conditions, the sound speed
of the gravitino(s) must be non-vanishing »
(Kolb,Long,McDonough)

<latexit sha1_base64="OjkntCkix7vklVYvCMgJ1c+Io/s="></latexit>

cs > 0

« In all 4d effective field theories that are low- energy limits of 
quantum gravity, at all points 
in moduli space and for all initial conditions, all eigenvalues of 
the sound speed matrix for fermions must be non-vanishing and 
subluminal »

<latexit sha1_base64="kO8rWDy6RJubX49VbvLynf6P8D0="></latexit>

0 < cis  1

a refined version
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Conclusions

- Gravitino production constraints important for 
phenomenological viability of SUGRA models.

- Very often, inflatino is produced, alleviate gravitino problem. 
- Important to check and impose sound speed

gravitino swampland conjecture 

- Most SUGRA models satisfy it, except peculiar models with
orthogonal constraint (or similar).  

- Subluminality constraints captured by goldstino SUSY 
lagrangians in                      limit and    positivity
constraints, but SUGRA condition is stronger.

- General interest: consistency constraints on nonlinear
SUSY/SUGRA

<latexit sha1_base64="DtobuvD+Jg/hxYjzJqI0V4UqtbY="></latexit>

0 < cs  1
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THANK  YOU    ! 
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