Challenges in particle physics and cosmology

I. Antoniadis

LPTHE, CNRS/Sorbonne University, Paris

SEENET-MTP online Seminar on Theoretical Physics 16 February 2022

Challenge for a fundamental theory of Nature

describe both particle physics and cosmology [12] [17]

- Particle physics studies phenomena at very short distances structure of matter and fundamental forces particle accelerators are the today microscopes [4]
- Cosmology studies phenomena at very large distances
 evolution of the Universe at early times after the Big Bang
 measurement of temperature fluctuations in the sky [6]
- However observations from very far come from the very past when Universe was very small and very hot governed by the laws of particle physics [8]

- Particle physics studies phenomena at very short distances structure of matter and fundamental forces particle accelerators are the today microscopes [4]
- Cosmology studies phenomena at very large distances evolution of the Universe at early times after the Big Bang measurement of temperature fluctuations in the sky [6]
- However observations from very far come from the very past when Universe was very small and very hot governed by the laws of particle physics [8]

- Particle physics studies phenomena at very short distances structure of matter and fundamental forces particle accelerators are the today microscopes [4]
- Cosmology studies phenomena at very large distances evolution of the Universe at early times after the Big Bang measurement of temperature fluctuations in the sky [6]
- However observations from very far come from the very past when Universe was very small and very hot governed by the laws of particle physics [8]

The large Hadron Collider (LHC) at CERN the world's most powerful microscope

Frontier Circular Colliders (FCC) **B**

Planck satelite experiments Cosmic Microwave Background (CMB) anisotropies

The Golden age of cosmology: From Planck to Euclid ESA Mission **p**

Accelerator experiments and cosmological observations: complementary information for the fundamental theory

Standard Model of particle physics : accurate description of microphysics at present energies

Higgs: ATLAS+CMS Combination

Production process	Measured significance (σ)	Expected significance (σ)
VBF	5.4	4.6
WH	2.4	2.7
ZH	2.3	2.9
VH	3.5	4.2
ttH	4.4	2.0
Decay channel		
$H \rightarrow \tau \tau$	5.5	5.0
$H \rightarrow bb$	2.6	3.7

Signal strength/SM:

The Run-1 Higgs Legacy!

arXiv:1606.02266 / JHEP 1608 (2016) 045 5153 authors!!

Detector teams at the Large Hadron Collider collaborated for a more precise estimate of the size of the Higgs boson

The newly found boson has properties as expected for a Standard Model Higgs

 $\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07}$ (stat) $^{+0.04}_{-0.04}$ (expt) $^{+0.03}_{-0.03}$ (thbgd) $^{+0.07}_{-0.06}$ (thsig),

Standard Model of electroweak + strong forces

- Quantum Field Theory Quantum Mechanics + Special Relativity
- Principle: gauge invariance $U(1) \times SU(2) \times SU(3)$

Very accurate description of physics at present energies 17 parameters

- mediators of gauge interactions (vectors): photon, W^{\pm} , Z + 8 gluons
- 2 matter (fermions): (leptons + quarks) \times 3

electron, positron, neutrino (up, down) 3 colors

Srout-Englert-Higgs sector: new scalar(s) particle(s)

François Englert and Peter Higgs: Nobel Prize 2013

Standard Model of cosmology : ACDM [2] [20] [27]

James Peebles: Nobel Prize 2019

Dark energy: Nobel Prize 2011

© The Nobel Foundation. Photo: U. Montan Saul Perlmutter Prize share: 1/2

© The Nobel Foundation. Photo: U. Montan Brian P. Schmidt Prize share: 1/4

© The Nobel Foundation. Photo: U. Montan Adam G. Riess Prize share: 1/4

Gravitational waves: start a new era of astronomy

The Nobel Prize in Physics 2017

© Nobel Media AB. Photo: A. Mahmoud Rainer Weiss Prize share: 1/2

© Nobel Media AB. Photo: A.Mahmoud Barry C. Barish Prize share: 1/4

© Nobel Media AB. Photo: A.Mahmoud Kip S. Thorne Prize share: 1/4

What our Universe is made of ?

- \bullet Ordinary matter: only a tiny fraction $\lesssim 5\%$
- Non-luminous (dark) matter: $\sim 25\%$
 - if new 'stable' particle \Rightarrow beyond the Standard Model of PP

Comparison with Direct Detection

No signal seen in any of the "mono"-signals so far -> limits

Axial-vector mediator and Spin-dependent direct limits

Vector mediator and Spin-independent direct limits

I. Antoniadis (SEENET seminar Feb 2022)

Problem of scales

- describe high energy (SUSY?) extension of the Standard Model unification of all fundamental interactions
- incorporate Dark Energy

simplest case: infinitesimal (tuneable) +ve cosmological constant [21]

 describe possible accelerated expanding phase of our universe models of inflation (approximate de Sitter) [23] [27]

 \Rightarrow 3 very different scales besides M_{Planck} : [31]

Supersymmetry: every particle has a superpartner with spin differ by 1/2

A well motivated proposal

addressing several open problems of the Standard Model

- natural elementary scalars
- realise unification of the three Standard Model forces
- natural dark matter candidate (lightest supersymmetric particle)
- addressing the hierarchy problem
- prediction of light Brout-Englert-Higgs ($\lesssim 130$ GeV)
- soft UV behavior and important ingredient of string theory

But no experimental indication of any BSM physics at LHC

It is likely to be there at some (more) fundamental level

ATLAS SUSY Searches* - 95% CL Lower Limits

March 2021

	Model	Signature	∫ <i>L dt</i> [fb ⁻¹	Mass limit	Reference
	$\bar{q}\bar{q}, \bar{q} \rightarrow q \bar{k}_{1}^{0}$	0 e, µ 2-6 jets i mono-jet 1-3 jets i	eniis 139 eniis 36.1	φ [1x, 8x Degen.] 1.0 1.85 m(t ² ₁)<400 GeV φ [5x Degen.] 0.9 m(l ² ₁)<56eV	2010.14293 2102.10874
Inclusive Searcher	$gg, g \rightarrow q\bar{q} \tilde{t}_1^0$	0 e, µ 2-6 jets	Erritiss 139	2.3 m(k ²)=0 GeV 8 Forbidden 1.15-1.95 m(k ²)=1000 GeV	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}W\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}W\tilde{\chi}_1^0$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	1 e.μ 2-6 jets ee.μμ 2 jets 0 e.μ 7-11 jets SS e.μ 6 jets	139 E ^{miss} 36.1 E ^{miss} 139 139	2.2 m2/i400 by 2 m2/m2/i400 by 1.2 m2/m2/i400 by 2 1.57 m2/m2/i400 by 1.57 m2/m2/i400 by 1.57 m2/m2/i400 by	2101.01629 1805.11381 2008.06032 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow d\tilde{\chi}_1^0$	0-1 e, μ 3 b i SS e, μ 6 jets	E ^{miss} 79.8 139	<u>ຮ້</u> ຂີ້ 1.25 ຫຍູ່ໃງໄ-200 GeV ຫຼືເງາ-ຫນໍໄງໄ-300 GeV	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 e,µ 2 b	E ^{miss} 139	δ, 1.255 m(k ²):400 GeV δ ₁ 0.68 10 GeV (λ ²):400 GeV	2101.12527 2101.12527
arks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\ell}_2^0 \rightarrow b h \tilde{\ell}_1^0$	0 e,μ 6 b 2 τ 2 b	E_T^{miss} 139 E_T^{miss} 139	δ1 Forbidden 0.23-1.35 Δm(ξ ² ₁ , ξ ² ₁)=130 GeV, m(ξ ² ₁)=100 GeV δ1 0.13-0.85 Δm(ξ ² ₁ , ξ ² ₁)=130 GeV, m(ξ ² ₁)=100 GeV	1908.03122 ATLAS-CONF-2020-031
3 rd gen. squa direct product	$\begin{array}{l} \tilde{i}_{1}\tilde{t}_{1}, \tilde{i}_{1} \rightarrow \tilde{x}_{1}^{0} \\ \tilde{i}_{1}\tilde{t}_{1}, \tilde{i}_{1} \rightarrow \tilde{w}b\tilde{x}_{1}^{0} \\ \tilde{i}_{1}\tilde{t}_{1}, \tilde{i}_{1} \rightarrow \tilde{v}, bv, \tilde{v}_{1} \rightarrow r\tilde{G} \\ \tilde{i}_{1}\tilde{t}_{1}, \tilde{i}_{1} \rightarrow c\tilde{x}_{1}^{0} / \tilde{c}\tilde{c}, \tilde{c} \rightarrow c\tilde{x}_{1}^{0} \end{array}$	$0-1 e, \mu \ge 1 \text{ jet}$ $1 e, \mu = 3 \text{ jets}(1 b)$ $1 \cdot 2 \tau = 2 \text{ jets}(1 b)$ $0 e, \mu = 2 e$ $0 e, \mu = \text{mono-jet}$	E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 36.1 E_T^{miss} 139	λ 1.25 mcfl-1 GW λi Forbidden 0.65 mcfl-400 GW λi Forbidden 1.4 mcfl-400 GW δ 0.65 mcfl-600 GW δ 0.55 mcfl-600 W	2004.14080,2012.03799 2012.03799 ATLAS-CONF-2021-008 1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{t}_2^0, \tilde{x}_2^0 \rightarrow Z/h \tilde{x}_1^0$ $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	1-2 e,μ 1-4 b 3 e,μ 1 b	E ^{miss} 139 E ^{miss} 139	Î₁ 0.067-1.18 m(k ² ₁)=500 GeV Ĩ₂ Farbildan 0.86 m(k ² ₁)=360 GeV, m(i ₁)-m(k ² ₁)=40 GeV	2006.05880 2006.05880
EW direct	$\tilde{\chi}_1^{\rm +}\tilde{\chi}_2^0$ via $W\!Z$	$3 e, \mu$ $ee, \mu\mu \ge 1$ jet	E ^{miss} 139 E ^{miss} 139	λ ² ₁ /k ² 0.64 m(k ² ₁)=0 k ² ₁ /k ² ₁ 0.205 m(k ² ₁)=0 (see (see (see (see (see (see (see (se	ATLAS-CONF-2020-015 1911.12606
	$\begin{split} &\tilde{\chi}_{1}^{2}\tilde{K}_{1}^{2} \forall ia WW \\ \tilde{\chi}_{1}^{2}\tilde{\chi}_{2}^{2} \forall ia Wh \\ \tilde{\chi}_{1}^{2}\tilde{\chi}_{1}^{2} \forall ia \tilde{\ell}_{L} / \rho \\ \tilde{\tau}_{1,K}^{2}\tilde{\tau}_{1,-K}^{-1}\tilde{\tau}_{-L} \tilde{\ell}_{L} \\ \tilde{\ell}_{L,K}^{-1}\tilde{\ell}_{L,K}^{-1}\tilde{\ell}_{L} \tilde{\ell}_{L} \\ \tilde{H}\tilde{H}, \tilde{H} \rightarrow b\tilde{G}/Z\tilde{G} \end{split}$	$2 e, \mu$ $0 - 1 e, \mu$ $2 b/2 \gamma$ $2 e, \mu$ $2 e, \mu$ $2 e, \mu$ 0 jets $ee, \mu \ge 1 jet$ $0 e, \mu \ge 3 b$	E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139 E_T^{miss} 139	λ² 0.42 m(T)=0 λ² (1/2) (1/2) (1/2) λ² (1/2) (1/2) (1/2)	1900.08215 2004.10894,1909.08226 1900.08215 1911.06680 1900.08215 1911.26066 1900.08206 1900.08206
	Direct $\tilde{x}^{\dagger} \tilde{x}^{\dagger}$ prod., long-lived \tilde{x}^{\dagger}	4 e, µ 0 jets i Disapp. trk 1 jet i	E ^{mass} 139	R 0.55 BR(t_1^* → ZC)=1 λ [±] 0.86 Pure Wino	2103.11684 ATLAS-CONF-2021-015
Long-lived particles	Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\ell}_1^0$ $\tilde{\ell}_{\ell}^2$, $\tilde{\ell} \rightarrow \ell \tilde{G}$	Multiple Multiple Displ. lep	36.1 36.1 57 139	Control (1) Personal (1) 2 (right = 10 m, 0.2 min) 2.00 2.01 2 (right = 10 m, 0.2 min) 2.05 2.41 mil(1) 2 (right = 10 m, 0.2 min) 0.71 r/1) = 0.1 min r/1) = 0.1 min	ATLAS-CONF-2021-015 1902.01636,1808.04095 1710.04901,1808.04095 2011.07812 2011.07812
RPV	$\begin{split} & \hat{k}_{1}^{\dagger} \hat{k}_{1}^{\dagger}, \hat{k}_{1}^{\dagger} \rightarrow Z t \rightarrow \ell \ell \ell \\ & \hat{k}_{1}^{\dagger} \hat{k}_{1}^{\dagger} \hat{k}_{2}^{\dagger} \rightarrow W \eta Z \ell \ell \ell t v \\ & \hat{k}_{1}^{\dagger} \hat{k}_{1}^{\dagger} \hat{k}_{2}^{\dagger} \rightarrow W \eta Z \ell \ell \ell t v \\ & \hat{k}_{1}^{\dagger} \hat{k}_{1}^{\dagger} \hat{k}_{2}^{\dagger} \rightarrow t b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2}^{\dagger} \hat{k}_{1}^{\dagger} \rightarrow b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} \rightarrow b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{2}^{\dagger} \hat{h}_{1}^{\dagger} \hat{h}_{2} + b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{2}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{2}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{1}^{\dagger} \hat{h}_{2} - b b s \\ & \hat{h}_{2}^{\dagger} \hat{h}_{2} - b \hat{h}_{2} - b b s \\ & \hat{h}_{2}^{\dagger} \hat{h}_{2} - b \hat{h}_{2} $	$\begin{array}{c} 3\ e,\mu\\ 4\ e,\mu\\ 0\ jets\\ 1\ dress{arge-}R\ jets\\ Multiple\\ \geq 4b\\ 2\ jets+2\ b\\ 2\ e,\mu\\ 2\ b\\ 1\ \mu\\ DV\\ 1\cdot 2\ e,\mu\\ \geq 6\ jets \end{array}$	139 26:1 36:1 36:1 139 36:7 36:7 36:1 136 139	0.47 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.7	2011.10643 2103.11684 1004.05688 ATLAS-CONF-2018-003 2010.01015 1710.00544 2000.11956 ATLAS-CONF-2021-007
*Only					

phénomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}$

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: March 2021

ATLAS Preliminary

 $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ί,γ	Jets†	E ^{miss}	∫£ dt[fb	¹] Limit		Reference
Extra dimensions	$\begin{array}{l} \text{ADD } G_{KK} + g/q \\ \text{ADD non-resonant } \gamma\gamma \\ \text{ADD BH} \\ \text{ADD BH multijet} \\ \text{RS1} G_{KK} \rightarrow \gamma\gamma \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\gamma qq \\ \text{Bulk RS} G_{KK} \rightarrow WV \rightarrow \ell\gamma qq \\ \text{Bulk RS} g_{KK} \rightarrow tt \\ \text{Bulk RS} F_{KK} \rightarrow $	0 e, μ, τ, γ 2 γ - 2 γ multi-channe 1 e, μ 1 e, μ 1 e, μ	1 - 4j 2j $\ge 3j$ - 2j/1J $\ge 1, b, \ge 1, J$ $\ge 2, b, \ge 3$	Yes - - - Yes 2j Yes j Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1 36.1	Ma 12.32 Ma 6.8 Trivity Ma 6.9 Trivity Ga, mass 6.9 Trivity Ga, mass 2.3 Trivity Ga, mass 2.0 Trivity Ga, mass 2.0 Trivity Scrimans 2.0 Trivity Scrimans 2.0 Trivity Scrimans 2.0 Trivity	$ \begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ m=6, M_D=3 \ \text{TeV, rot BH} \\ k/M_{PI}=0.1 \\ k/M_{PI}=1.0 \\ k/M_{PI}=1.5 \\ \text{Tr}=15\% \\ \text{Tr}=(1,1), 20(A^{(1,1)} \rightarrow \text{tr})=1 \end{array} $	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.0823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{SSM} \ Z' \to \ell\ell \\ \mathrm{Leptophobic} \ Z' \to bb \\ \mathrm{Leptophobic} \ Z' \to tr \\ \mathrm{SSM} \ W' \to \ell\nu \\ \mathrm{SSM} \ W' \to \tau\tau \\ \mathrm{HVT} \ W' \to WZ \to \ell\nu q \text{ model B} \\ \mathrm{HVT} \ Z' \to ZH \text{ model B} \\ \mathrm{LRSM} \ W_{Pq} \to tb \\ \mathrm{LRSM} \ W_{Pq} \to \mu N_{R} \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 2 \ \tau \\ - \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ \tau \\ B \ 1 \ e, \mu \\ 0 \ 2 \ e, \mu \\ 0 \ e, \mu \\ multi-channe \\ 2 \mu \end{array}$	$2b = 1b, \ge 2$ $\ge 1b, \ge 2$ -2j/1J = 1-2b $\ge 1b, \ge 2$ $\ge 1b, \ge 2$ ≥ 1	– J Yes Yes Yes Yes J	139 36.1 139 139 36.1 139 139 139 139 36.1 80	2 mass 2,0 70% 2 mass 2,0 70% 2 mass 2,1 10% 9 mass 3,1 10% 9 mass 4,1 10% 9 mass 4,1 10% 9 mass 4,1 10% 9 mass 3,2 10% 9 mass 4,2 10% 9 mass 4,2 10% 9 mass 4,2 10% 9 mass 4,2 10%	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5$ TeV, $g_L = g_R$	1903.06248 1709.07242 1805.05299 2005.05138 1906.05509 1801.06992 2004.14636 ATLAS-CONF-2020-043 2007.05293 1807.10473 1904.12679
G	Cl qqqq Cl ffqq Cl eebs Cl µµbs Cl tttt	− 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b ≥1 b, ≥1	- - - Yes	37.0 139 139 139 36.1	A A 1.8 TeV A 2.0 TeV A 2.5 TeV	$\begin{array}{c} \textbf{21.8 TeV} \bar{\eta_{1L}} \\ \textbf{35.8 TeV} \\ \textbf{g}_{*} = 1 \\ \textbf{g}_{*} = 1 \\ C_{tcl} = 4\pi \end{array} \vec{\eta}_{Lt}$	1703.09127 2006.12946 ATLAS-CONF-2021-012 ATLAS-CONF-2021-012 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a Scalar reson. $\phi \rightarrow t_X$ (Dirac DM	0 e, μ, τ, γ 0 e, μ, τ, γ M) 0 e, μ 0 e, μ 1) 0-1 e, μ	1 - 4 j 1 - 4 j 2 b 2 b 1 b, 0-1 J	Yes Yes Yes Yes Yes	139 139 139 139 36.1	Mass 2.1 TeV Mass 376 GeV 3.1 TeV Mass 3.1 TeV 3.1 TeV Mass 520 GeV 3.4 TeV	$\begin{array}{l} g_0 {=} 0.25, \ g_i {=} 1, \ m(\chi) {=} 1 \ \mathrm{GeV} \\ g_0 {=} 1, \ g_i {=} 1, \ m(\chi) {=} 1 \ \mathrm{GeV} \\ \tan\beta {=} 1, \ g_{\chi {=}} 0.8, \ m(\chi) {=} 10 \ \mathrm{GeV} \\ \tan\beta {=} 1, \ g_{\chi {=}} 0.8, \ m(\chi) {=} 10 \ \mathrm{GeV} \\ \tan\beta {=} 1, \ g_i {=} 1, \ m(\chi) {=} 10 \ \mathrm{GeV} \\ y {=} 0.4, \ \lambda {=} 0.2, \ m(\chi) {=} 10 \ \mathrm{GeV} \end{array}$	2102.10874 2102.10874 ATLAS-CONF-2021-006 ATLAS-CONF-2021-006 1812.09743
ΓÖ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 nd gen Scalar LQ 3 nd gen Scalar LQ 3 nd gen Scalar LQ 3 nd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 e, \mu, \geq 1 \\ 0 \ e, \mu, \geq 1 z \end{array}$	$\geq 2 j$ $\geq 2 j$ $\geq 2 j$ $\geq 2 j, \geq 2 j$ $\tau \geq 1 j, \geq 1 j$ $\tau = 1 j, \geq 1 j$	Yes Yes Yes b Yes b - b - Yes	139 139 139 139 139 139	LG mass 1.8 TeV LG mass 1.7 TeV LG mass 1.2 TeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \mathcal{B}(\mathrm{LQ}_{1}^{\mathrm{v}} \to b\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_{1}^{\mathrm{v}} \to t\nu) = 1 \\ \mathcal{B}(\mathrm{LQ}_{1}^{\mathrm{v}} \to t\tau) = 1 \\ \mathcal{B}(\mathrm{LQ}_{2}^{\mathrm{v}} \to b\tau) = 1 \end{array}$	2006.05872 2006.05872 ATLAS-CONF-2021-008 2004.14060 2101.11582 2101.12527
Heavy quarks	$\begin{array}{l} VLQ \ TT \rightarrow Ht/Zt/Wb + X \\ VLQ \ BB \rightarrow Wt/Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} \ T_{5/3} \rightarrow Wt + X \\ VLQ \ Y \rightarrow Wb + X \\ VLQ \ B \rightarrow Hb + X \\ VLQ \ QQ \rightarrow WqWq \end{array}$	multi-channe multi-channe 2(SS)/≥3 e, 1 e, µ 0 e,µ 1 e, µ	b) $\mu \ge 1 \text{ b}, \ge 1$ $\ge 1 \text{ b}, \ge 1$ $\ge 2 \text{ b}, \ge 1$ $\ge 4 \text{ j}$	i Yes j Yes j Yes Yes	36.1 36.1 36.1 79.8 20.3	T mass 1.37 TeV B mass 1.34 TeV Tu,moss 1.64 TeV Ymass 1.65 TeV B mass 1.2.1 TeV B mass 690 GeV	$\begin{array}{l} & \text{SU(2) doublet} \\ & \text{SU(2) doublet} \\ & \mathcal{B}(T_{5:3} \rightarrow Wt) = 1, \ c_R(T_{3:3}Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \text{singlet}, x_R = 0.5 \end{array}$	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j -	Ī	139 36.7 36.1 20.3 20.3	q' mass 6.7 TeV q' mass 5.3 TeV V mass 2.6 TeV /* mass 3.0 TeV /* mass 1.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana γ Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	1 e,μ 2μ 2,3,4 e,μ (St 3 e,μ, τ 	≥ 2 j 2 j 5) - - - -	Yes 3 TeV	139 36.1 36.1 20.3 36.1 34.4	M° mass 790 GeV Ne mass 32 TeV H° mass 670 GeV H° mass 120 ZeV M00 GeV 1.22 TeV morpoler mass 1.22 TeV	$\begin{array}{l} m(W_R)=4.1 {\rm TeV}, g_L=g_R\\ DY {\rm production}\\ DY {\rm production}, S(H_L^{1\pm} \to \ell\tau)=1\\ DY {\rm production}, g =5e\\ DY {\rm production}, g =1g_O, {\rm spin} 1/2 \end{array}$	20008.07949 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	vs # o lev pi	artial data	full d	lata		10 ⁻¹ 1 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Relativistic dark energy 70-75% of the observable universe negative pressure: $p = -\rho \Rightarrow$ cosmological constant

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = \frac{8\pi G}{c^4}T_{ab} \Rightarrow \rho_{\Lambda} = \frac{c^4\Lambda}{8\pi G} = -p_{\Lambda}$$

Two length scales:

• $[\Lambda] = L^{-2} \leftarrow \text{size of the observable Universe}$ $\Lambda_{obs} \simeq 0.74 \times 3H_0^2/c^2 \simeq 1.4 \times (10^{26} \text{ m})^{-2}$ Hubble parameter $\simeq 73 \text{ km s}^{-1} \text{ Mpc}^{-1}$

•
$$\left[\frac{\Lambda}{G} \times \frac{c^3}{\hbar}\right] = L^{-4} \leftarrow \text{dark energy length} \simeq 85 \mu \text{m}$$
 [17]

Newton's law is valid down to distances 0.05 mm

Adelberger et al. '06

de Sitter spacetime

vacuum solution of Einstein equations with +ve cosmological constant and maximal symmetry: 10 isometries like flat space

hyperboloid from 5 dimensions: $-y_0^2 + \vec{y}^2 = \frac{1}{H^2}$ SO(4, 1) vs Poincaré E_4

 $R_{\mu\nu\lambda\rho} = H^2(g_{\mu\lambda}g_{\nu\rho} - g_{\mu\rho}g_{\nu\lambda})$ $R = 12H^2 = 4\Lambda$

Flat slicing: $ds^2 = -dt^2 + e^{2Ht} d\vec{x}^2$ exponential expansion

FRW with flat 3-space and scale factor $a(t) = e^{Ht}$

isometries: 3 space translations, 3 rotations, 1 scale, 3 special conformal

e.g. scale:
$$\vec{x} \rightarrow \omega^2 \vec{x}$$
 and $t \rightarrow t - \omega/H$

Closed slicing: $ds^2 = -dt^2 + \frac{1}{H^2}ch^2Ht d\Omega_3^2 \leftarrow \text{unit sphere } S^3$

Open slicing: $ds^2 = -dt^2 + \frac{1}{H^2}sh^2Ht dH_3^2 \leftarrow \text{unit hyperbolic } H^3$ [26]

de Sitter spacetime

$$ds^{2} = -(1 - H^{2}r^{2})dt^{2} + \frac{dr^{2}}{1 - H^{2}r^{2}} + r^{2}d\Omega_{2}^{2} \leftarrow \text{unit sphere } S^{2}$$

describes 1/4 of the spacetime

Observed Universe: homogeneous, isotropic and (spacially) flat

 \Rightarrow all regions causally connected in the past

But in contradiction with Einstein's equations

observed universe has a huge number of causally disconnected regions

Inflation proposal:

postulates an exponentially expanding period in early times a small region becomes fast exponentially large \Rightarrow explains homogeneity, isotropy and flatness problems it needs 50-60 e-foldings of expansion at least [39]

It predicts also small anisotropies from slight deviation from de Sitter space temperature/density perturbations from quantum fluctuations [12] [17]

Inflation:

Theoretical paradigm consistent with cosmological observations [12]

But phenomelogical models with not real underlying theory [17]

introduce a new scalar field that drives Universe expansion at early times

slow-roll region with V', V'' small compared to the de Sitter curvature

Swampland de Sitter conjecture

String theory: vacuum energy and inflation models

related to the moduli stabilisation problem

Difficulties to find dS vacua led to a conjecture:

$$\frac{|\nabla V|}{V} \geq c \quad \text{or} \quad \min(\nabla_i \nabla_j V) \leq -c' \quad \text{in Planck units } G_N = 8\pi$$

with c, c' positive order 1 constants
Dark energy: forbid dS minima but allow maxima
Inflation: forbid standard slow-roll conditions
Assumptions: heuristic arguments, no quantum corrections
debate on the validity of the conjectures [31]

String moduli

String compactifications from 10/11 to 4 dims \rightarrow scalar moduli arbitrary VEVs: parametrize the compactification manifold

size of cycles, shapes, ..., string coupling

- N = 1 SUSY \Rightarrow complexification: scalar + i pseudoscalar $\equiv \phi_i$
- Low energy couplings: functions of moduli

Moduli stabilization

If moduli massless \rightarrow inconsistent

long range forces, cosmological production, accelerators

Outstanding problem: moduli stabilization

- avoid experimental conflict
- fix their VEVs \Rightarrow compute low energy couplings

Generate moduli potential:

via

- after SUSY breaking

- preserving SUSY

- non-perturbative effects or by
- turn-on fluxes: constant field-strengths of generalized gauge potentials gauge fields: internal magnetic fields generalization: higher rank antisymmetric tensors [28]

Problem of scales: connections

Direct connection of inflation and supersymmetry breaking:

identify the inflaton with the partner of the goldstino Goldstone fermion of spontaneous supersymmetry breaking longitudinal (spin-1/2) helicity of the massive spin-3/2 gravitino while accommodating observed vacuum energy

Inflation in supergravity: main problems

Inflaton: part of a chiral superfield X [37]

together with a 2-component fermion and a (pseudo) scalar

• slow-roll conditions: the eta problem

 $|\eta| = |V''/V| << 1 \text{ in Planck units } G_N = 8\pi \Rightarrow$ fine-tuning of the inflaton potential $V_F \propto e^{K_F}$ Kähler potential

canonically normalised field: $K = X\bar{X} \Rightarrow \eta = 1 + \dots$ [38]

• trans-Planckian initial conditions \Rightarrow

break validity of Effective Field Theory from gravitational corrections

- stabilisation of the (pseudo) scalar companion of the inflaton
- moduli stabilisation, de Sitter vacuum, ...

Starobinsky model of inflation

$$\mathcal{L} = \frac{1}{2}R + \alpha R^2$$

Lagrange multiplier ϕ : $\mathcal{L} = \frac{1}{2}(1+2\phi)R - \frac{1}{4\alpha}\phi^2$ $\phi = 2\alpha R$

Rescaling the metric to the Einstein frame \Rightarrow

equivalent to a scalar field with exponential potential:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 \qquad M^2 = \frac{3}{4\alpha}$$

supersymmetric extension: need two Lagrange multipliers \Rightarrow two chiral superfields

one contains the inflaton ϕ and the other the goldstino ${}_{\scriptscriptstyle [36]}$

Goldstone fermion of spontaneous supersymmetry breaking

Combined results from Planck/BISEP2/Keck Array P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)

Non-linear Starobinsky supergravity

Non-linear supersymmetry limit: one field decouples:

$$\mathcal{L} = \frac{1}{2}R - \frac{1}{2}(\partial\phi)^2 - \frac{M^2}{12}\left(1 - e^{-\sqrt{\frac{2}{3}}\phi}\right)^2 - \frac{1}{2}e^{-2\sqrt{\frac{2}{3}}\phi}(\partial a)^2 - \frac{M^2}{18}e^{-2\sqrt{\frac{2}{3}}\phi}a^2$$

no eta-problem but

initial conditions require trans-planckian values for $\phi~~(\phi>1)$

• pseudoscalar a much heavier than ϕ during inflation, decouples:

$$m_{\phi} = \frac{M}{3}e^{-\sqrt{\frac{2}{3}}\phi_0} << m_a = \frac{M}{3}$$

● inflation scale *M* independent from supersymmetry breaking scale
 ⇒ compatible with low energy supersymmetry [32]

Inflation from supersymmetry breaking I.A.-Chatrabhuti-Isono-Knoops '16, '17, '19

Inflaton : supersymmetric partner of the goldstino

in the presence of an abelian U(1) gauge symmetry

R symmetry: rotates the fermionic coordinates of superspace by a phase

- η vanishes to lowest order ⇒ no η-problem [32]
 (superpotential linear in the goldstino superfield X)
- gauge R-symmetry: pseudoscalar companion absorbed by the $U(1)_R$
- inflation around a maximum of scalar potential (hill-top) ⇒ small field no large field initial conditions
- vacuum energy at the minimum:

tuned between gravitational and gauge contributions

R-symmetry restored during inflation

maximum at the origin with η due to

a correction to the kinetic terms depending on one parameter A > 0 [32] [41]

$$K = X\bar{X} + A(X\bar{X})^2$$

Predictions

slow-roll parameters (neglecting $U(1)_R$ gauge interactions)

$$\eta = \frac{V''}{V} = -4A + \mathcal{O}(\rho^2)$$

$$\epsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2 = 16A^2\rho^2 + \mathcal{O}(\rho^4) \simeq \eta^2 \rho^2 <<|\eta|$$

η naturally small since A is a correction

inflation starts with an initial condition for $\phi=\phi_*$ near the maximum and ends when $|\eta|=1$

$$\Rightarrow$$
 number of e-folds $\mathit{N} = \int_{\mathit{end}}^{\mathit{start}} rac{\mathit{V}}{\mathit{V'}} \simeq rac{1}{|\eta_*|} \ln\left(rac{
ho_{\mathrm{end}}}{
ho_*}
ight)$

Planck '15 data : $\eta \simeq -0.02 \Rightarrow N \gtrsim$ 50 naturally [26]

Density petrurbations characterised by:

- an amplitude $A_s \sim \mathcal{O}(10^{-9})$
- and a spectral index $n_s \simeq 0.96$

 $(n_s = 1 \text{ corresponds to a scale invariant spectrum})$

Primordial gravitational waves have (yet) not been observed

tensor-to-scalar ratio of amplitudes $r\equiv A_g/A_s \lesssim 0.015$

amplitude of density perturbations $A_s = \frac{\kappa^2 H_*^2}{8\pi^2 \epsilon_*}$ spectral index $n_s \simeq 1 + 2\eta_*$ tensor - to - scalar ratio $r = 16\epsilon_*$ Planck '15 data : $\eta_* \simeq -0.02$, $A_s \simeq 2.2 \times 10^{-9}$, $N \gtrsim 50$ $\Rightarrow r \lesssim 10^{-4}$, $H_* \lesssim 10^{12}$ GeV

Question: can a 'nearby' minimum exist with a tiny +ve vacuum energy? Answer: Yes [38]

need an extra correction to the kinetic terms

- Explicit examples within field theory/supergravity
- Derive these models in string theory?

interesting open problem

part of a more general research in supergravity and string theory realising supersymmetry deformations, gauged R-symmetry and Fayet-Iliopoulos D-terms

- Cribiori-Farakos-Tournoy-Van Proeyen '18
- I.A.-Jiang-Lacombe '19; I.A.-Derendinger-Tartaglino Mazzucchelli '19

I.A.-Derendinger-Jiang-Tartaglino Mazzucchelli '20

Conclusions

Challenges in fundamental theories of particle physics and cosmology

- Origin of very different scales
- Role and breaking scale of supersymmetry in Nature
- Origin of inflation and nature of the inflaton field another fundamental scalar or an effective degree of freedom?
- Nature of dark energy cosmological constant or a dynamical field?

General class of models with inflation from supersymmetry breaking:

Identify the inflaton with the superpartner of the goldstino

- direct connection of supersymmetry and inflation scales
- R-symmetry restored during inflation \Rightarrow fixes the initial conditions
- avoids all supergravity problems of inflation