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Strings in curved space-time SQO07, Nis 2007



Definition of the model

e Action

b

_ 2, /——) |1 ap v (2)
S = d — — G B 0 o PR
K A § g { [29 pv + \/_—g pv aX’ O +

- &% (a=0,1) world-sheet coordinates
- ") (r=0,1,...,D —1) space-time coordinates
- z'(&) (¢ =0,1,...,p) Dp-brane coordinates

— String propagates in background defined by

* metric tensor G (z)
* antisymmetric tensor field B, (x) = —B,,(z)
x dilaton field d(x)

e Space-time field equations (Consequence of the quantum
world-sheet conformal invariance)

¢ =R 1B B, + 2D a, = 0
BMV = iy — Z ppoOv + py =
B, = D,B’,, — 2a,B" ., =0
D—-26 1
B3® = 2mT _ ZBMPJB“” — D,a" 4+ 4a> =0

B,y = 0,B,,+ 0,B,, + 0,B,, field strength
a, = 0,P gradient of dilaton
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Canonical analysis

e Currents
T v . a D . a, .
J:I:u:P ,u]:‘:y"‘_/v;"fj::]:t,u__gj
2a a
at 1
Y = i, — —is £ 26F', i} =7np £ 2kd’
a? 2a2
where
. vl 1
J4p = 7 + 26lly 2, 4, = B/,Ll/ + EGMV

1
j=a'ji, — Eii = a’(i, F 2 F")

m, and mp are canonically conjugate momenta to the
variables x* and F’

e Canonical Hamiltonian and energy momentum tensor

He=h"T_+h"T,

1 ” F. 1
T, — F— (G“ Jipd iy + zf;zi) + =¥
4k 2

1 PR S U R
::FR (G“ Jiujiu_§>+§(zi_FZi

e Two independent copies of Virasoro algebras

{Tx(0),Tx(5)} = —[Tx(0) + Tx(5)]6' (0 — 7)
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Equations of motion

JN =V + T 0,.2°0-2° =0
¥ ¥

Fpo

[hF] = Gu0ia"0:x” — 2V 1L04® = 0

2 v
[i"1= R® + —(Dpay)0xa”dza = 0

e Generalized connection

aP P

TP ) —1° +pTr g + % p
ivu_l_ tuy = Loy o vu_l_? pQu

+op
Under space-time general coordinate transformations the

expression *I'*_ transforms as a connection.

=y A7)

e The covariant derivatives with respect to the Christoffel
connection I‘p and to the connection I', = I‘p + B?

+ovp T v
we respectlvely denote as D, and D,
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Geometry of space-time seen by the probe
string

e Parallel transport
VHi(z) — OV”“(QC +dx) = VHF 4 °6VH

°§VF = —°T" VP dz”
OI";U affine linear connection

e [ he covariant derivative

"DVH = V¥(z 4 dz) — V' = dV" - °5V*
= (8,V" + °T* V?)dz" = °D,V"da"
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Torsion

e torsion (antisymmetric part of the affine connection)
oOrmp  __ OTp op
TW - FW o Fvu

Geometrical interpretation: measures the non-closure of the
curved " parallelogram”

.’L'M(DQ) — .CUM(Dl) = OTMPO ti) t; d£1 d£2
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Non-metricity

e Covariant derivative is responsible for the comparison of the
vectors from different points

e What variable is responsible for comparison of the lengths
of the vectors?

— V*#(x): using invariance of the scalar product under the
parallel transport
Vi(z) = Gu(z)V"(2)V"(z)
= [Guv(z) + O5GW($)]OVM C>V||

— its parallel transport to the point  + d=, °V”“

oy -2 o]
Vi(z +dz) = Gz + dz)°® V” ”
— Difference of the squares of the vectors

°sV? = OVH2(ac + dz) — V2(ac)
= [Gu(z + dz) — Gu(z) — °6G ()] C>V||M C>VIIV

Up to the higher order terms we have

°6V? = [dG,(z) — °6G . (2)|V*V?
= °DG V'V = —daz” Q. V'V

e nonmetricity covariant derivative of the metric tensor

OQupa — _ODMGPU
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Stringy torsion and nonmetricity

e Stringy torsion antisymmetric part of the stringy
connection

* p _x P * p Tp o
Ty, = Ty, — Fiw—:I:ZP B,

e Stringy nonmetricity measures non-compatibility of the

metric G, with the stringy connection *T'}

1
"Qippe = — DxuGpo = EDiu(apao)

The presence of the dilaton field ® leads to breaking of the
space-time metric postulate

e Stringy Weyl vector

—4

0 R

1
* ox
du D Q +pup

is a gradient of new scalar field ¢, defined by the expression

1 1
© = —Zln a’ = —Zln(G“Vf?MCI)f?VCI))
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The space-time action

1
S = /da:\/—Gew[R — EB2 + 2D*P]

B?=B,,,B"* D*®=G"D,J,®
is reproduce by the action

*S = /d% V—Ge % *L

* 1 * 2 * 2 1 5D>*2
R4+ —1{(117T7T° — 26 — | —
+48( Q>+3<4 q

L

If the condition ¢ = & <= G"9,80,® —e ** =0
is satisfied, up to the term with factor (%2 S =*S

Invariant measure
1.Invariant under space-time general coordinate transformations.
2. Preserved under parallel transport <= *D,"Q2 = 0.

3. Enable integration by parts, which can be achieved with help
of of the Leibniz rule and the relation

/ d°z*Q Dy, VF = / d°zd,("QVH)
so that we are able to use Stoke's theorem.
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Decreasing the number of the Dp-brane
dimensions
Open string boundary conditions

e According to the action principle, evolution from given
initial configuration (at 7;) to given final configuration (at
T¢) is such that the action is stationary

Tf 4 . / [ S py jO=T
S — dr do <pu =+ 7#) oz + dr(ypdz")/5=0 =
T 0 T

oL oL
Pu = oar’ Tu = ox'*
— For all variations §z* — EM Py + 7}; =0

— At the string endpoints — BC (vu0x")/°—5 =0
e Closed string: do not have endpoints — no BC

e Open string
— arbitrary variations dx* on the string endpoints
— Neumann boundary conditions

’711/020 — 07 ’Y,u/0=7r =0

— fized edges of the string
— Dirichlet boundary conditions

dx"|,=0 =0, 0x"|,=r =0
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Dp-brane

o — ' ={z% 2" ...x?}  Dp tangential coordinates

NN Boundary conditions: Yi/o=o* = 0
— z% = {xP Tt P2, ....a:D_l} Dp normal coordinates
DD Boundary conditions: dx'|,« = 0

e Example: D = 3
' ={z'=X,z' = Z}, z*={z°=Y =0}

/

/
pd -

X
/

Figure 1: D2-brane stretched over (X,Z) plane

e String endpoints are attached to Dp-brane and move freely
on (z, z') plane
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Linear dilaton background

e — Open string propagates in linear dilaton background

% metric tensor G = const

* antisymmetric tensor field B, = —B,,, = const

x dilaton field ® =Py +auzt, (a, = const)
— Chose for simplicity

* B, — By and a, — a;

x G, = 0 for p = 1 € {0,1,..,p}

v=a€{p+1,...,D—1}

e Conformal gauge, gog = €2F77a,6

1 .
S = K,/ d2§ { {EnaBGw/ + aaBBIW} 8am“85xy + 2naﬁai8a:v285F}
by

Action depends on F' — no conformal invariance
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Non-commutativity in absence of diaton field,
® =0

e For ® = 0, action is F' independent

e — Consider v;|,—,* as primary constraints
— Apply Dirac consistency procedure ~;|,—o+ — I';(0)

e — Algebra of constraints
{Ti(0), T;(8)} = —xG{{!8' (o - 5)

fof = Gy — 4B;xG™ B,; effective metric tensor
— We will refer to it as the open string metric tensor,
the metric tensor seen by the open string

e Conventions: (Ge_lf)ij inverse of G’?Jff

Vi=(G )V V2=(G) ViV
Vi=GYVv; V?=GYV,V,

e — We solve SCC constraints I'; = 0
o'(0) = 4'(e) =207 [ " dowp; (o)

1

i'(0) = 3 [#'(0) + (o), pilo) = 5 [mi(o) + mi(—0)]

— All Dp-brane coordinates are non-commutative

1 o o ..
(G- r.Bg 1Y

{z"(0), 27 (5)} = 20Y0(c+5), ©Y = —— (G

Strings in curved space-time SQO07, Nis 2007



13

Linear dilaton and role of field F' in open string
theory

e — In linear dilaton background ® = ®y + a;z’,
classical theory is F' dependent
— Closed string theory: on the quantum level the field F
decouples (conformal invariance condition)
— Open string theory: Whether field F' decouples?

e — Conformal part of the world-sheet metric F' —
dynamical variable
— F' — Neumann boundary conditions
arbitrary variations O F on the string endpoints

oL
’Y/a:O = 0, '7/0=7r =0 (’7 = aF/)

— Consider ;| y=* and ~|,—,* as primary constraints
— Dirac consistency procedure
'Yi'a:a* — FZ(O) 3 7'020* — F(U)

e 1. a?#0 and a*#0
— turns coordinate . = a;z' to commutative one
— F' becomes a noncommutative variable
— Field F' breaks conformal invariance of open string theory
Sazdovi¢, Eur. Phys. J. C44 (2005) 599, hep-th/0408131
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Origins of gauge symmetries

2 a*=GY%;a;,=0 and a*#0

J= a‘m; — — + 2/<oaiB--a:j, — 2ka’F
= 7 5 1] ’
Standard canonical constraint

3 a’#0 and &= (G ) "aia; =0
— Complete set of the constraints x4 = (I';, T)

{xa(c),xB(@)} = —xMagd’,

é.. Qa
Muyp={ JU =% ).
AP ( 2a; 0 )

=~ 0\ Kkl ~1
Gij = Gij — 4B (Pr) " Bij = (PrGegr)ij
det M4 = —451,2 det é” ,

— Two zeros in > =0 —  two first class constraints

— Some of the constraints originated from the boundary
conditions turn from the second class into the first
class constraints
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Effective theory

e — First class constraints generate local symmetries
— After gauge fixing, the gauge conditions and the first class
constraints can be treated as second class constraints
— We solve them together with the true second class
constraints

e The original variables in terms of new ones

CBiDp(O') = QZ(O') — 2@” ) dO‘lpj(O'l),

(aB)iz"/omor = 0, F=0

o — Effective variables: Q' = (Pp,)’;¢’. Pi = (Pp,)i’p;

— Q' and P; are canonical variables in the Dp-brane
subspace defined by projector Pp,

{@'(0), ;@) } = (Pp,)";85(0,7)
e Noncommutativity tensor

. 1 _ g . -
o' = ——(G " Pp,BG™'Pp )7 (0¥ = -0

eff
: : ey
e Projectors ()7 = ”ﬁg’ (n1); = (aB);
()7 = 6,7 — (111); (Ppy)'s = (Up)'5/ 2,
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Solution of boundary conditions-General
features

e — Components (x1, F') satisfy Dirichlet boundary
conditions
— First class constraints turn some Neuman to Dirichlet
boundary conditions and
number of Dp-brane dimensions decreases

e — Commutative degrees of freedom z. = aim%p
— ;0% = 0, so the effective momentum disappears

— Closed string components contain only the open string
coordinates, while the momenta are absent

e Noncommutativity
The closed string components (xnc)', contains both the
open string coordinates and momenta
— Separate the center of mass
zh (0) = (@ Jom + X (o)
— Poisson brackets between the coordinates

. . P _1 a- = O = 5-
{Xpy(r0), X} (o)} =094 1 o=rn=0
0 otherwise
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Conclusion
e Dp-brane features
fec | scc | Dpp | (Pp,) DBC (Zne)® T
1 0 p+2 | p+2 5;7 - (I7x)" , F | g
2| 1 |pt2| p | (@pd |2, F | (Pro)' | wg
3| 2 p p (Pp);? | =1, F (Pra)’ 0

To = aia:i, T = (aB)ia:i

N Lo N N
(Pr)i’ = (I7) 9 7 (Pr)i = (I17) 22

a“=0 =

— In cases 2. and 3. field F disappears, (F' = 0)
— Additional, open string conformally invariant conditions
a*=0 or a’=0
Nikoli¢ and Sazdovié

Gauge symmetries decrease the number of Dp-brane dimensions
Phys. Rev. D 74 (2006) 045024 (hep-th/ 0604129)

e In all cases
— effective energy-momentum tensor satisfies Virasoro
algebra

(T4, Ti} = = [Ti(o) + T(3)] 6", {T+, T3} =0,

— but in new background

Gz‘j — (PDpGeff)ij7 Bij — O, o — (I)()—I—CLZ'Qi
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Conformal invariance with the help of Liouville

action
e — New conditions for quantum conformal invariance
G __ B __ @ _
W—O,ﬁw—() — B = c.

— Non-linear sigma model becomes conformal field theory
— There exists a Virasoro algebra with central charge c

e — The remaining anomaly, can be cancelled by introducing
Liouville action

B* / 2 21 @
Sp, = —— d°é+/—gR'"" —R
g 2(4m)°k Jx . g A

— Advantages
x Conformal invariance in the presence of field F’
* Noncommutativity parameter depend on central
charge ¢
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Realization

e Conformal gauge gnop = e2Fna,3 — R® = _2AF
2 af ) 2 af
S=r | d&|...4+2n " a;0ux OgF + —n "0, FOsF
> Q

5®
T (47k)2
F' is a dynamical variable with the Liouville action as a

kinetic term

Q=

e To cancel the term linear in F', we change the variables,
F —*F = F 4 Sa;z’

1 2
S=r [ |0 *G;i+e*P B;: ) 00z'0g2 + 20 P8,  FOG F
J J B B
)Y 2 Q

— Standard form of the action without dilaton term

— Redefined Liouville term, FF — *F (*F decouples)
— Redefined space-time metric, *G;; = G;; — aa;a;
— Dilaton dependence is through the metric *G;

° *Gij and the corresponding effective one *ijff are singular
aa2 =1 — det *Gij =0
ad®=1 = det*G{l' =0
They produce gauge symmetries of the theory

e We choose Neumann boundary conditions for *F
e Zero central charge limit a — oo <= B¥=¢=0
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Conclusion (in presence of Liouville term)

e We carefully investigate all three cases with Liouville action
All important results as:
— Form of the solution
— Dimensions of Dp-brane
— Number of commutative and noncommutative variables
— Noncommutativity relation
are the same as in the absence of Liouville action

e Differences produced by Lioville term

— Local gauge symmetries appear for a? ‘
instead for a’=0anda*=0
— Variables change the roles , zop — *F and F — xg
x Instead of x¢, the variable *F' is commutative
* In the first case xg¢ is noncommutative instead of F’
* In the second and third case xg satisfies the Dirichlet
boundary conditions instead of F

I

|
)
-
o
)
I
Q |~
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Symmetries of the space-time field equations

e World-sheet metric tensor g,p, in terms of the light-cone
variables (h*, h™, F)

L or [ —2h"ht AT+ AT
JoB =3¢ \ b= 4 nt -2

e — World-sheet Diffeomorphisms £* — £# + (&)

59" = g 8,e” + g O, — £"0,9""

— Transition to light-cone variables in terms of
8:|: — 81 . th,j:

5h:|: = 8()6:‘: + hialei — 5i81hi

81(h™ + h™)
h— —ht

OF = —81(e+ +e )+ (e — €+)

_|_ —
g _ g
—m(aoF +h O1F) + W@OF +hYoF)

— Closure of algebra

[6(21), 8(e2)]hT = 8(e3)h™ [8(e1),8(e2)]F = 8(e3)F

— Structure functions

+ + + + +
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Classical algebra

e Generators
e — Ty e@T = /da[€+(a)T+(a)—I—€_(J)T_(a)]

Algebra
{61@T,82@T} :63@T

e — From particular expression for structure functions
{Ts(0), T+(5)} = [Tx(0) + Tx(5)]4’

{Tiv T:F} =0

— Note that it is Virasoro algebra with
et =eF(Eh,¢).
— Algebra of 2D diffeomorphisms:
two independent copies of Virasoro algebra
— Replace conformal invariance prescription by
principle of 2D reparametrization invariance
— 2d metric (conformal part F') is quantized
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Quantum algebra

e — Transition from classical to quantum theory
Fields — Operators

ot — &' m, o R, Ti(p) = Ta(p) :

Y = {Gwv B, P}
— Poisson brackets — Commutators

{A,B} =C — [A, B] = ihC

e — Breaking of Virasoro algebra (Breaking of 2D
diffeomorphisms) because of normal ordering

[T (o), T(5)] = th[T5(0)+T4(2)]8'+(By, +8,0,) O 8" +57 6"

(T4 (o), T£(5)] = 0
— Quantum 2D diffeomorphisms <—-
Classical space-time equations of motions

6fy(<p) =0, B.(¢)=0, B%(p)=0

e — |t is possible to determine exact solutions and exact
symmetries of the space-time field equations, which are
not known in an explicit form

— Exact solutions: String propagates in group manifold
G, — group metric
B, — parallelizing torsion
d = const
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Exact symmetries

e — Generalization of approach by
M. Evans, B. A. Ovrut, |. Giannakis, ...
based on conformal field theory
— Replace conformal invariance prescription by
principle of 2D reparametrization invariance
— 2d metric (conformal part F’) is quantized

e — Fields variations w — @+ dp

T:(p) = Ti(p + 6p) = Ti(p) + 6T (p)
— If ¢ + & is also equation of motion

(T4 (p+80) e, T (p+80)5) = ih[T4h (9+09) o+ T (9+59)5]8"

(T4 (0 + 69)a, T(p + 8¢)5] = 0
— Conditions

(T4 (), §T4(6)]+[6T4(0), T (5)] = ih[6T s (0)+6Tx(5)]8

[T:t(d), 5T:F(5-)] + [5T:t(0'), T:F(a-)] =0
o General solution

5Ty (o) = [Pn, Tu(o)]  Ta = /daT(A(x),O)
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Example

e — Energy-momentum tensor quadratic in currents

1 o :
Ty = :FEGMVJ:E,MJ:I:V Jtp = 7T/L+2f$(B,uyIlZ%G/,w)33

v!

1 -
(STj: = ﬂ((SB;u/ j: %5G,ul/)]i]:iyz

— Chose the form of generator
'y = 2m/d0'Aua:”/

1 "
[T T (o)) = (Bl — OvAp)ihis
— Symmetry transformations

5By = 0,A, — OyA,  6G,L, =0

e We are going to find symmetries of

— Open string theory
— Theory in presence of dilaton field
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