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Motivation

Better understanding of the vacuum structure 
of type IIB compactifications with fluxes

Soft supersymmetry breaking terms from 
string theory (direct relevance for LHC!)
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Overview



Type IIB 
Massless (bosonic) spectrum:

10-dimensional action:

SIIB ∼
∫

d10x
√
−g

{
e−2φ

[
R + (∂φ)2

]
− F 2

1 −G3 · Ḡ3 − F̃ 2
5

}

+
∫

eφC4 ∧G3 ∧ Ḡ3

G3 = F3 − SH3with ,

and F̃5 = F5 − 1
2C2 ∧H3 + 1

2B2 ∧ F3

gMN , φ, BMN , C, CMN , CMNPQ

S = e−φ + iC0



Complex structure: 

Type IIB string has symmetry under orientation 
reversal of the string worldsheet; mod out this 
symmetry  =⇒ orientifold (reduced supersymmetry)

Calabi-Yau compactification of IIB orientifold
=⇒ N = 1, d = 4 supergravity 

Moduli problem 

Uα

T j = τ j + iCj

∫

Σj
4

C4

Kähler:

volume(Σj
4)

h1,1(number given by )

(number given by )h2,1



• IIB string theory contains 2-form fields

• Kinetic term in 10 dimensions:

• Internal components      of the metric 
correspond to the moduli fields

•                 : Potential for the moduli

Background Fluxes

Gil

∫
d10x

√
−GFIJKFLMNGILGJMGKN

〈Fijk〉 #= 0
[Polchinski, Strominger]

[Giddings, Kachru, Polchinski]

∫
d10x

√
−g G3 · Ḡ3 ⇒ Wflux =

∫

CY
G3 ∧ Ω3



Lbos

(−G)1/2
=

1
2κ2

R−K,̄ıjDµφ̄ı̄Dµφj − 1
4
Re(fab(φ))F a

µνF bµν

−1
8
Im(fab(φ))εµνρσF a

µνF b
ρσ − V (φ, φ̄)

                     ,     Kählerpotential

       gauge kinetic function (holomorphic)

 

                             ,       Superpotential (holom.)

KK,̄ıj =
∂2K(φ, φ̄)
∂φ̄ı∂φj

Supergravity

fab

V (φ, φ̄) = eK(K ı̄jDı̄WDjW − 3|W |2) + Re(fab)DaDb

DjW ≡ ∂φj W + ∂φj KW W

N = 1, d = 4

≡ Fj



Wflux leads to potential for dilaton and c.s. moduli 

[Kachru, Kallosh, Linde, Trivedi]KKLT:

Additional contribution to superpotential
from D7-branes wrapped around 4-cycles Σj

Gaugino condensation on D7:

Wnp ∼ e−afj

f j
tree = T j = τ j + iCj

Supersymmetric minima:

DT j W = DUαW = DSW = 0

Compactification manifolds stays Calabi-Yau (in IIB!)



Drawbacks of KKLT

K = −ln(S + S̄)− 3 ln(T + T̄ ) + Kcs(U, Ū)

Stabilization of S Uand by DUW = 0 = DSW

W = W0 + Ae−aT

DT W = 0 =⇒W0 = −Ae−aτ (1 + 2
3aτ)

W0 very small

,

W = Wflux + Wnp = W (S, U) + A(S, U)e−aT

T = τ + iC



τ

[Kachru, Kallosh, Linde, Trivedi]

Supersymmetric minimum is AdS:



Supersymmetric minimum is AdS:

One needs uplift mechanism 

V = eK
(
GIJ̄DIWDJ̄W̄ − 3|W |2

)
+

ε

Vα

Generically the mass matrix has negative eigenvalues! 
[Choi, Falkowski, Nilles, Olechowski, Pokorski]

Case by case study necessary
[Lüst, Reffert, Scheidegger, Schulgin, Stieberger]



Large Volume Scenario (LVS)
[Balasubramanian, Berglund, Conlon, Quevedo]

W0 of order O(1) more generic

DT W != 0 [Balasubramanian, Berglund]

α′-corrections not negligible

K = −2 ln(V) + . . .→ −2 ln(V + 1
2ξS3/2

1 ) + . . .

[Becker, Becker, Haack, Louis]

ξ = −ζ(3)χ/(2(2π)3)

Look at particular direction in Kähler cone

V2/3 ∼ τb " 1 (V ∼ 1015ls)
τi ∼ lnV



Non-supersymmetric AdS minima

Generically no tachyons after uplift (cf. below)

Interesting pattern for soft susy breaking terms, 
e.g.  gaugino masses

Ma ∼
m3/2

ln(Mp/m3/2)
, m3/2 ∼

Mp

V

[Conlon, Quevedo; 
Choi, Falkowski, Nilles, Olechowski]



Non-supersymmetric AdS minima

Generically no tachyons after uplift (cf. below)

Interesting pattern for soft susy breaking terms, 
e.g.  gaugino masses

Ma ∼
m3/2

ln(Mp/m3/2)
, m3/2 ∼

Mp

V

Question:  What effect do string loop 
corrections have on LVS? 

[Conlon, Quevedo; 
Choi, Falkowski, Nilles, Olechowski]



Review LVS (continued)

Need Calabi-Yau with: 

Basis of 4-cycles with [Witten]

“Swiss cheese” form [Conlon, Quevedo, Suruliz]

χ̃ = 1



Review LVS (continued)

Need Calabi-Yau with: 

Basis of 4-cycles with [Witten]

“Swiss cheese” form [Conlon, Quevedo, Suruliz]

large 4-cycle
large 2-cycle

small 4x2-cycle

χ̃ = 1



I.e.

Examples in [Denef, Douglas, Florea]

Here for simplicity always hypersurface in P4
[1,1,1,6,9]

:

h1,1 = 2
h2,1 = 272

V =
1

9
√

2

(
τ3/2
b − τ3/2

s

)

V = τ3/2
b −

( ∑

i

aiτi

)3/2
− . . .−

( ∑

i

biτi

)3/2



VO(1/V3)

V

Look for minimum with 

τ3/2
b ∼ V , aτs ∼ lnV (=⇒ e−aτs ∼ V−1)

Large volume expansion of the potential

VO(1/V3) =
12
√

2|A|2a2√τse−2aτs

VS1
− 2a|AW0|τse−aτs

V2S1
+ ξ

3|W0|2
√

S1

8V3

(already minimized w.r.t. imaginary part in    )Ts

=⇒ ξ > 0 , i.e. χ < 0



Minimize w.r.t. τs,V :

τs ∼ S1ξ
2/3 V ∼ ξ1/3

√
S1|W0|

a|A| eaτs

Also minimum in S Uand :

V = eKGab̄DaWDb̄W̄︸ ︷︷ ︸
∼V−2

+VO(1/V3) + . . .
︸ ︷︷ ︸

∼V−3

Minimum (non-supersymmetric) AdS; needs uplift

Can be done without changing  τs,V much 
[Conlon, Quevedo, Suruliz; Choi, Falkowski, Nilles, Olechowski]

,



Soft susy breaking terms
Lsoft = −

(
1
2Maλaλa + 1

6aIJKφIφJφK + 1
2bIJφIφJ

)
+ c.c.

−(m2)IJφ∗
IφJ

These are determined by moduli F-terms

E.g. gaugino masses:

Ma =
1
2

1
Refa

∑

α

Fα∂αfa

Fα = eK/2GαiDiW



In LVS: SM gauge group arises from D7-branes
wrapped around small cycles

FU = 0

However

(without loop corrections)

FS = V−2

F a = V−1

=⇒ Ma =
1
2

1
Refa

F a

=1︷︸︸︷
∂afa +(suppressed in V−1)

Refa ∼ g−2
a ∼ τa + ha(S, U)



In P4
[1,1,1,6,9] model:

Cancellation at leading order 

[Conlon, Quevedo; 
Choi, Falkowski, Nilles, Olechowski]

Ma ∼
m3/2

ln(Mp/m3/2)

Similar for other soft susy breaking terms
[ Abdussalam, Conlon, Quevedo, Suruliz] 

= 2τse
K/2W̄0

(
(1− 3

4aτs
)− 1 +O((aτs)−2)

)
+O(V−2)F s



How stable are existence and features of LVS
vacua against other quantum corrections?



How stable are existence and features of LVS
vacua against other quantum corrections?

[Conlon, Quevedo, Surulitz]-correctionsα′



How stable are existence and features of LVS
vacua against other quantum corrections?

Kleinbottle: Möbius strip: Cylinder:

No discussion of additional loop-corrections in
presence of D-branes/O-planes:

[Conlon, Quevedo, Surulitz]-correctionsα′



1-loop Kähler potential

:Result for T6/(Z2 × Z2)

(Eisenstein series)

K(1) = c
3∑

I=1

[
E2(U I)

(S + S̄)(T I + T̄ I)
+

E2(U I)
(T J + T̄ J)(TK + T̄K)

∣∣∣
K !=I !=J

]

where andc = 15/(2π6)

E2(U) =
∑

(n,m) !=(0,0)

U2
2

|n + mU |4

Not known for the P4
[1,1,1,6,9] model

[Berg,Haack,Körs]
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The function :

Gets large for large U2 : proportional to U2
2

→ Corrections can get large for degenerate tori

Compared to α′-correction, 1-loop correction is suppressed

in - but leading in -expansion

cE2(U)

S T



Generalization to P4
[1,1,1,6,9] model?

Does one expect corrections δK ∼ E(U)
S1τs

?

Could lead to very strong constraints for LVS



Origin of loop corrections

Exchange of Kaluza-Klein modes m2
KK ∼ t−1

2-cycle volume

This effect should generalize to  P4
[1,1,1,6,9]model

ts

D3

tb

a

b

τb

τs



ts

tb

τs

τb

Exchange of strings, winding around 1-cycles within 
the intersection of two D7-brane stacks 



ts

tb

τs

τb

Exchange of strings, winding around 1-cycles within 
the intersection of two D7-brane stacks 

However: In P4
[1,1,1,6,9]model the D7-branes do not 

intersect =⇒ does not generalize (other models?)



Closer look at 1-loop calculation; it actually gives

Weyl
rescaling

δK =
∑

I

tIE2(U I)
S1V

+
∑

I

E2(U I)
tIV

∫
d4x
√
−g

[
Ṽe−2φR + t̃I∂UI ∂ŪI E2(U I)∂µU I∂µŪ I + . . .

]

−→
∫

d4x
√
−g

[
R +

t̃I∂UI ∂ŪI E2(U I)
Ṽe−2φ

∂µU I∂µŪ I + . . .
]

(τ = τ̃e−φ)

Get old result by using:

V = tIτ I

τ1 = t2t3 (& permutations)



More plausible form of 1-loop corrections:

with unknown functions 

Note: 
more leading

 than 
-correctionα′

K(1) =
√

τsE
(K)
s (U)

S1V
+
√

τbE
(K)
b (U)

S1V

(
+

E(W )
s (U)
√

τsV
+

E(W )
b (U)
√

τbV

)

E(K)
s (U), E(K)

b (U)

V ∼ τ3/2
b =⇒

√
τbE

(K)
b

S1V
∼

E(K)
b

S1V2/3



V = Vnp1 + Vnp2 + V3

∆ ≡
√

2S1τs − 3E(K)
s

Vnp1 = eKcs
24
√

2a2|A|2τ3/2
s e−2aτs

∆V

V3 = eKcs
3|W0|2

8V3

[
√

S1ξ
(
1 +

π2

3ζ(3)S2
1

)
+

4
√

τs(E
(K)
s )2

S2
1∆

]

Vnp2 = −eKcs
2a|AW0|τse−aτs

S1V2

[
1 +

6E(K)
s

∆

]

appears at O(V−10/3)E(K)
b



The two terms in :

(A = 1,W0 = 1,

Mainly quantitative changes

χ = 0 possible?

a = 2π/8, ξ = 1.31)

V3

,log10 V ∼ −0.129E(K)
s + 13.99 τs ∼ −0.379E(K)

s + 41.98

E(K)
s

S1



What about gaugino masses?

Before there was a cancellation in F s

FS = V−2

FU = V−2

Loop corrections only appear sub-sub-leading!

F s = 2τse
K/2W̄0

(
− 3

4aτs
− 9W̄0

16a2τs
+

9W̄0(12aE(K)
s − S1)

64S1a3τ3
s

+ . . .
)



Conclusion

LVS seems surprisingly stable against 
1-loop corrections

Is our conjecture right?

Further corrections? (Higher loops?     ?)

Perturbative volume stabilization?

Departure from “swiss cheese” form?

α′
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Winding strings in a CY?


