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A nice review by E. Sezgin and R. Percacci:
Properties of gauged sigma models, hep-th/9810183

“Main Motivation: They arise naturally in globally or
locally supersymmetric field theories.

&Scalar fields which parametrize the sigma model
manifold either arise from matter or supergravity
multiplets

@It is important to understand the structure of
supergravity theories in the presence of scalar fields:
Dualities, moduli problem etc.

An uncomplete list of sigma model manifolds that arise
in SUGR:




Scalar Manifold G/H

Gauge Group K C G

Matter Sector

SU(1,1)/U(1)

GL(2, R)/SO(2)

S0(n,1)/SO(n)

SO(2)

dim KCn+1

n Maxwell

SL(3,R)/SO(3) x SL(2, R)/SO(2)

S0(n,2)/SO(n) x SO(2)

SO(3)

dim KCn+2

n Maxwell

SL(5, R)/SO(5)

S0(n,3)/SO(n) x SO(3)

SO(5)

dim KCn+3

n Maxwell

SO(5,5)/S0(5) x SO(5)

SO(n,5)/SO(n) x SO(5)

SO(n,4)/SO(n) x SO(4)
Quaternionic Kahler

S0(n,1)/S0(n)

SO(5)

dim KCn+4
Sp(1) x K’

n Tensor
n Maxwell
n Hyper

n Tensor

Eg/USp(8)
SU*(6)/USp(6)
SO(n,5)/SO(n) x SO(5)
Quaternionic Kahler

SO(n —1,1) x SO(1,1)/SO(n — 1)

Ee(—26)/F1

SU*(6)/Sp(3)
SL(3,C)/SU(3)

SL(3,R)/SO(3)

SO(6)
SU(3) x U(1)
dimKCn+5
Sp(1) x K’
dim K Cn
SU(3)
SU(3)
SU(3)

SO(2)

n Maxwell
n Hyper
n Maxwell
25 Maxwell
13 Maxwell
7 Maxwell

4 Maxwell

Supergravities in D > 4 dimensions with N supersymmetry and nontrivial sigma




The global model:

1 :
Lo =57V 0up"0u¢” gas(e) p: M= N

There is a global symmetry group G acting on N.

11, Ty = f1," Tk ; Tr(TrTy) = —3017.
The “left” action is generated by vector fields

obeying: | .
,C(G) »CKIKJ— f[J KL .

The “infinitesimal” global transformation:

oA = —AN K& (p) | 0N =0 .




For invariance of the action: LKk;903 =0 .

K1 should be Killing vectors.

The Lifted Formulation: necessary for fermion couplings

Imagine the existence of a larger space: N

Projection: m: N — N,

We will assume that m amounts to factoring out a
right action of some group H.

CH):  Lp B = fpCFY .

©w: M — N, @:M—)N,




The lift is not unique: @' (z) = (¢(x))h(z)
some map h : M — H,

@’ is also a lift of
= there exists a gauge symmetry

One® =n"FJ (o)

On N there must also be the global G invariance:

We must have: T#(K;) = K;

which implies:  £r K7 =0.




The final ingredient is a connection on the bundle
7: N — N.

Vertical subspaces are determined by the kernel
of the map 1.

To define horizontal subspaces we need
Lie algbra valued 1-form : Kernel=horizontal

a a _ ga
w@Fb —55.

. b b
H connection: Lr,wg = —fac wg -

G invariant: L wi=0.




he vertical and horizontal projections:

Thus one can define a covariant derivative:

DM@& = H&B%@B
— u@a - BZFaa(@)

(¢) is the composite gauge field.




This composite gauge field transforms as a genuine
gauge field:

SABL =0,

onB,, = 0,B; + fachZn
Covariant derivatives have the desired transformation
properties:

5ADM@& = —AIaBK[&DM@B ,
677DM@ — UaaﬁFaDMSO




The lift of the metric: g = %5 dg@ X ng

Properties: V.L1H, should agree with the metric on N

L@Z—

Because of the gauge invariance, this is equivalent to
the original lagrangian.




The gauging of a subgroup K of G:

Ti(i = 1,...,dim K). A, =AT,.

+ local
OAA;, = 0N + gf* i ALA" 0pA;, =0 .

Introduce the covariant derivative:
Du@& — vu@& — BZFc?(@)
where

Y= 0,0% + A} K (o)




The desired transformation properties:

6ADu 3" = —A'(2)95KiD, 3" |

6,0 = n“@gFf‘Dugbﬁ ,

gauged sigma model action:

L=—=0:30) D" D"

1
2



The gauge invariant potential:
& No unique way to fix in bosonic theories

&Noether procedure (in general) uniquely fixes
the potential in supersymmetric theories.

Possible to introduce a Wess-Zumino term
G/H models:

N - G/H

N : G

But there is a gauged fixed version which is very
practical

one can apply the lifted formulation!




Coset structure in the algebra: G=H®P
[H,H]eH {T,} a=1,...,dimH
P,PleH

H,PleP

L(y) : coset representative: G-valued

The action: G L(y) H

Construct Maurer Cartan form: L '0.L =V.T, + BT, ,
Vo vielbein

B¢ . gauge potential




Spacetime pull backs:
L7'9,L =PT, + BT, ,

a

where P, =0,p"V, ,  B,=0.p"B, .

1

ungauged sigma model Lo = 3 D P -

For gauging introduce the covariant derivative:

L™ (0, +A,T,) L="P]T, + BT, .

The potential becomes a function of the so called

C-functions:
L7 = !




V=tr CZCZ .

The difficult part is to find a convenient parametrization
of the coset.

Try to introduce coordinates covering
the whole manifold.




Example:

from a recent work with E. Sezgin and D. Jong

6D dyonic string with active hyperscalars,
hep-th: 0608034

6D N=(1,0) gauged supergravity coupled to tensor and

vector multiplets.

Motivation: find the structure of the most general
supersymmetric solutions with active hyperscalars

parametrizing a coset space.




The coset space:  Sp(nw,1)/Sp(nm) x Sp(1)

Sp(n) can naturally be defined using quaternions.

n x N Hermitian matrix of quaternions
non-compact Sp(n,1) can be defined similarly.

For the compact case the parametrization of coset
was given by Gursey and Tze.

Non-compact generalization by Sezgin.




y=0-t)Y2 A=y —tth)TH2

The gauged Maurer-Cartan form:




%7—2 (Dut't = t'D,t) — AnT"
772 (~tDut + AD,A + 30,701 ) — ALT!
Y 2AD,t

where

'y
Dyt = Bt + tT7 AL — AITT' ¢

C-functions:

" Tt
C" = L'T"L =~

A

ATt AT A

¢TIt —ttTT'A )




For the coset space Sp(1,1)/Sp(1)xSp(1)

V=0 _4¢2)2 {912% + 9/2(¢2)2}

P IS a vector parametrizing 4-dim. hyperboloid.

For higher dimensional cases, the potential is much
more complicated.

However, it has a stable global minimum at t=0.




The solution with active hyperscalars:
The D=6 model:

1 1
L=R—10p) - L€ Gu,G"’ — L2 Fl F'" —2ptA Pt — 4729 ClpC' 47

1
1 59+ TVvop
Dye+ 45e27G,, " T e,

vop

1
i (F“@Hgo — %6290(}_ F“”p> £,

pvp

1
1 ol pupv —5@ vl B
AL, —e730Ch 5 P

PSAF’L%A :

Higher dimensional origin is not known!!




Conditions from the existence of a Killing spinor:

QThere exists a null Killing vector: Vi
& There exists a quaternionic structure obeying

([T)Zk (IS)kj _ Erst(lt)ij o 57“55; .

Conditions from the hyperfermion variation:

aA
VH P 0,

Pt = 21N (T g PP .

7

First order equation for scalars, similar to
holomorphicity condition.




DZ¢Z:O7 ¢ZE¢Q57Q7
Di¢j — Djp; = —€;k0 Dy

2+4 split of the geometry, identity map:




1 1 1 1
e 297 e 29 (—dt® + da?) + L?e2¥7 2% b3 (dr® + r2dQ3)

Pt e

%Qg—dt/\d:c/\de_s” ,

2 2 r
g’f’O’R,

(8%
Y

r:\/zo‘zﬁ%g, Q3 =0k Aok Aop, |

1/3
es0_:4h/
0L2 ’

Dyonic string solution, 1/8 susy, tear drop,
non-compact but finite volume transverse space
singular!!, for some parameters AdS3xS3 horizon




