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A nice review by E. Sezgin and R. Percacci: 
Properties of gauged sigma models, hep-th/9810183

Main Motivation: They arise naturally in globally or 
locally supersymmetric field theories.

Scalar fields which parametrize the sigma model 
manifold either arise from matter or supergravity 
multiplets  

It is important to understand the structure of 
supergravity theories in the presence of scalar fields: 
Dualities, moduli problem etc. 

An uncomplete list of sigma model manifolds that arise 
in SUGR:



D N Scalar Manifold G/H Gauge Group K ⊆ G Matter Sector

10 (2,0) SU(1, 1)/U(1) —- —-

9 2 GL(2, R)/SO(2) SO(2) —-

1 SO(n, 1)/SO(n) dim K ⊆ n + 1 n Maxwell

8 2 SL(3, R)/SO(3) × SL(2, R)/SO(2) SO(3) —-

1 SO(n,2)/SO(n) × SO(2) dim K ⊆ n + 2 n Maxwell

7 2 SL(5, R)/SO(5) SO(5) —-

1 SO(n,3)/SO(n) × SO(3) dim K ⊆ n + 3 n Maxwell

6 (2,2) SO(5, 5)/SO(5) × SO(5) SO(5) —-

(2,0) SO(n,5)/SO(n) × SO(5) — n Tensor

(1,1) SO(n,4)/SO(n) × SO(4) dim K ⊆ n + 4 n Maxwell

(1,0) Quaternionic Kahler Sp(1) × K ′ n Hyper

SO(n, 1)/SO(n) —- n Tensor

5 4 E6/USp(8) SO(6) —-

3 SU∗(6)/USp(6) SU(3) × U(1) —-

2 SO(n,5)/SO(n) × SO(5) dim K ⊆ n + 5 n Maxwell

Quaternionic Kahler Sp(1) × K ′ n Hyper

1 SO(n − 1, 1) × SO(1, 1)/SO(n − 1) dim K ⊆ n n Maxwell

E6(−26)/F4 SU(3) 25 Maxwell

SU∗(6)/Sp(3) SU(3) 13 Maxwell

SL(3, C)/SU(3) SU(3) 7 Maxwell

SL(3, R)/SO(3) SO(2) 4 Maxwell

Table 1: Supergravities in D > 4 dimensions with N supersymmetry and nontrivial sigma
model sectors.
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where γµν is the spacetime metric, gαβ is a function of the fields (but not their
derivatives), and f is a coupling constant, which will be set equal to 1 in the rest
of the paper. This model can be interpreted geometrically by saying that the fields
ϕα are coordinate representatives of a map

ϕ : M → N . (2)

and that gαβ is the metric on N in the chosen coordinate system. In field theory, and
in particular in supergravity, M is interpreted as spacetime and N as an internal
space; in the theory of extended objects, M is the worldsheet and N is interpreted
as spacetime. In the rest of the paper, we shall assume that M is flat Minkowskian
spacetime, for simplicity.

It is usually desirable for physical reasons to assume that the theory has global
invariance under a symmetry group G. Throughout this paper G will denote a
Lie group, not necessarily compact; the Lie algebra of G will be denoted L(G).
We assume that in L(G) there is given an inner product, not necessarily Ad(G)-
invariant, and {TI}, with I = 1, . . . , dim G will be an orthogonal basis in L(G).
When the generators TI are represented by matrices, we will assume that they are
normalized so that Tr(TITJ) = − 1

2δIJ . The structure constants fIJ
K are defined

by

[TI , TJ ] = fIJ
KTK ; (3)

if the inner product in L(G) is Ad(G)-invariant, then the structure constants are
totally antisymmetric (note that since the metric in L(G) is δIJ the distinction
between upper and lower indices is immaterial).

In the following the components of all tensor fields on N will be referred to the
natural bases {∂α} and {dyα}. The left action of G on N is generated by vector
fields KI = KI

α∂α which under Lie brackets form an algebra anti-isomorphic to
L(G):

L(G) : LKI K
α
J = −fIJ

LKL
α . (4)

The reason for this minus sign is that conventionally L(G) is defined as the algebra
of left-invariant vector fields on G. These vector fields generate the right action of
G on itself. The left action of G on itself is generated by the right-invariant vector
fields, whose algebra is anti-isomorphic to L(G). Every left action of G will be
generated by vector fields satisfying such an algebra.

For the action (1) to be invariant, we assume that the vectors KI are Killing vectors
for the metric g, that is, if Lv denotes the Lie derivative along v,
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energy limits of M theory in certain backgrounds in a nonperturbative framework.
In this context, it is natural to investigate the brane solutions of gauged super-
gravity theories in diverse dimensions. In doing so, the potentials mentioned above
play an important role. Motivated by this fact, we will elucidate the structure of a
potential which arises typically in gauged supergravity theories and we will derive a
general and simple formula for it. As an application, we will apply this formula to
the gauged (1, 0) supergravity in six dimensions and derive an explicit formula for
its potential. In doing so, we also exhibit the relation between various formulations
of the gauged sigma models that exist in the supergravity literature.

For completeness and in view of their possible applications in D < 4, we have also
included a section on the gauged sigma models with Wess-Zumino terms. This
section is primarily based on [3].

This paper contains the following sections:

1. Introduction

2. Minimal formulation

3. Lifted formulation and coupling of fermions

4. Gauging K ⊆ G

5. Introducing a gauge invariant potential

6. Adapted coordinates and H-gauge condition

7. Introducing a gauged Wess-Zumino term

8. Gauged sigma model on a bundle of frames

9. Gauged sigma model on G/H

10. The potential in (1, 0) supergravity D = 6

11. Appendix: Table of gauged supergravity theories in D > 5

2 Minimal Formulation

In its minimal form, a nonlinear sigma model is a theory of scalar fields described
by the Lagrangian

Lϕ = −
1

2f2

√
−γγµν∂µϕα∂νϕβ gαβ(ϕ) (1)
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There is a global symmetry group G acting on N.
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The “left” action is generated by vector fields 
obeying:

The “infinitesimal” global transformation:

LKI gαβ = 0 . (5)

If Λ is an element of L(G), the infinitesimal variation of the fields under global G
transformation is

δΛϕα = −ΛIKα
I (ϕ) , ∂µΛI = 0 . (6)

In general, acting on any function of the fields, δΛ = ΛIKα
I ∂α. Such variations

satisfy an algebra isomorphic to the abstract algebra L(G): [δΛ1
, δΛ2

] = δ[Λ1,Λ2].
Invariance of the action based on the Lagrangian (1) follows directly from using
(5).

3 Lifted Formulation and Coupling of Fermions

As we shall discuss later, in order to couple the system to fermions it is sometimes
necessary to use a different formulation of the theory, where there are more fields
than physical degrees of freedom. Some of the fields (or functions thereof) are then
gauge degrees of freedom. This is completely analogous to what happens in gravity,
where the coupling to fermions requires the use of the tetrad formalism.

The most general geometrical setup is to imagine a space N̄ with a map

π : N̄ → N , (7)

which is surjective. In the new formulation the basic variables will be fields ϕ̄ᾱ,
describing a map from spacetime into N̄ . Given this map ϕ̄, one can construct in a
unique way a map ϕ from spacetime into N by composing ϕ̄ with the projection π,
and the Lagrangian must be constructed in such a way that it has the same value
for any two maps ϕ̄ that project onto the same map ϕ.

This setup is unnecessarily general and in physical applications it is usually assumed
that the projection π amounts to factoring out the right action of some group H
acting on N̄ . In the following we assume this to be the case.

Given a map ϕ : M → N , we say that a map

ϕ̄ : M → N̄ , (8)

is a lift of ϕ if π
(
ϕ̄(x)

)
= ϕ(x). If ϕ̄ is a lift of ϕ, then also ϕ̄′, defined by

ϕ̄′(x) =
(
ϕ̄(x)

)
h(x) for some map h : M → H , is a lift of ϕ. Therefore, the lifted

nonlinear sigma model has a nontrivial gauge group.

5

The global model:
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The Lifted Formulation: necessary for fermion couplings

Kı should be Killing vectors. 
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Imagine the existence of a larger space:

We will assume that π amounts to factoring out a 
right action of some group H.

In general there are topological obstructions to the existence of lifts 4. Here we will
deal only with local properties and we shall assume that lifts exist.

Let fab
c be the structure constants of H . We have a right action of H on N̄ ,

generated by vector fields Fa = F ᾱ
a ∂ᾱ whose algebra is isomorphic to L(H):

L(H) : LFaFb
γ = fab

cFc
γ . (9)

Given an element η = ηaTa of L(H), the infinitesimal variation of the fields ϕ̄ is

δηϕ̄ᾱ = ηaF ᾱ
a (ϕ̄) (10)

and we have [δη1
, δη2

] = δ[η1,η2].

If there is a global invariance under G, it must be realized also on the lifted fields
with Killing vectors K̄ ᾱ

I satisfying the same algebra (4) as the fields Kα
I :

δΛϕ̄ᾱ = −ΛIK̄ ᾱ
I (ϕ̄) , ∂µΛI = 0 . (11)

We must have Tπ(K̄I) = KI and this is possible if the Killing vectors K̄I are
H-invariant, i.e.

LFaK̄ β̄
I = 0 . (12)

In order to rewrite the Lagrangian (1) in terms of the lifted fields, we need a new
geometrical ingredient: a connection in the bundle π : N̄ → N . By this we mean the
following. The tangent space TpN̄ at p ∈ N̄ contains a subspace Vp = kerTπ, called
the vertical subspace, which is tangent to the orbit of H . One can take the vectors
Fa as a basis in Vp. There is, however, no preferred choice of a complementary
subspace in TpN̄ . A connection is precisely the assignment at each point p of a
“horizontal” subspace Hp such that Hp ⊕ Vp = TpN̄ and such that the distribution
of these spaces is H-invariant: for any h ∈ H , Hph = Hph.

These horizontal spaces can be defined as the kernels of a L(H)-valued one-form ω
called the connection form, with the properties that

ωa
ᾱFb

ᾱ = δa
b . (13)

and

LFaωb
ᾱ = −fac

bωc
ᾱ . (14)

In addition, the connection is assumed to be G-invariant:
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As we shall discuss later, in order to couple the system to fermions it is sometimes
necessary to use a different formulation of the theory, where there are more fields
than physical degrees of freedom. Some of the fields (or functions thereof) are then
gauge degrees of freedom. This is completely analogous to what happens in gravity,
where the coupling to fermions requires the use of the tetrad formalism.

The most general geometrical setup is to imagine a space N̄ with a map

π : N̄ → N , (7)

which is surjective. In the new formulation the basic variables will be fields ϕ̄ᾱ,
describing a map from spacetime into N̄ . Given this map ϕ̄, one can construct in a
unique way a map ϕ from spacetime into N by composing ϕ̄ with the projection π,
and the Lagrangian must be constructed in such a way that it has the same value
for any two maps ϕ̄ that project onto the same map ϕ.

This setup is unnecessarily general and in physical applications it is usually assumed
that the projection π amounts to factoring out the right action of some group H
acting on N̄ . In the following we assume this to be the case.

Given a map ϕ : M → N , we say that a map

ϕ̄ : M → N̄ , (8)

is a lift of ϕ if π
(
ϕ̄(x)

)
= ϕ(x). If ϕ̄ is a lift of ϕ, then also ϕ̄′, defined by

ϕ̄′(x) =
(
ϕ̄(x)

)
h(x) for some map h : M → H , is a lift of ϕ. Therefore, the lifted

nonlinear sigma model has a nontrivial gauge group.

5

Projection:



The lift is not unique: 

LKI gαβ = 0 . (5)

If Λ is an element of L(G), the infinitesimal variation of the fields under global G
transformation is

δΛϕα = −ΛIKα
I (ϕ) , ∂µΛI = 0 . (6)

In general, acting on any function of the fields, δΛ = ΛIKα
I ∂α. Such variations

satisfy an algebra isomorphic to the abstract algebra L(G): [δΛ1
, δΛ2

] = δ[Λ1,Λ2].
Invariance of the action based on the Lagrangian (1) follows directly from using
(5).

3 Lifted Formulation and Coupling of Fermions

As we shall discuss later, in order to couple the system to fermions it is sometimes
necessary to use a different formulation of the theory, where there are more fields
than physical degrees of freedom. Some of the fields (or functions thereof) are then
gauge degrees of freedom. This is completely analogous to what happens in gravity,
where the coupling to fermions requires the use of the tetrad formalism.

The most general geometrical setup is to imagine a space N̄ with a map

π : N̄ → N , (7)

which is surjective. In the new formulation the basic variables will be fields ϕ̄ᾱ,
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ᾱ = −fac

bωc
ᾱ . (14)

In addition, the connection is assumed to be G-invariant:
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a ∂ᾱ whose algebra is isomorphic to L(H):

L(H) : LFaFb
γ = fab

cFc
γ . (9)

Given an element η = ηaTa of L(H), the infinitesimal variation of the fields ϕ̄ is
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ᾱ = −fac

bωc
ᾱ . (14)

In addition, the connection is assumed to be G-invariant:

6

In general there are topological obstructions to the existence of lifts 4. Here we will
deal only with local properties and we shall assume that lifts exist.

Let fab
c be the structure constants of H . We have a right action of H on N̄ ,

generated by vector fields Fa = F ᾱ
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I (ϕ̄) , ∂µΛI = 0 . (11)

We must have Tπ(K̄I) = KI and this is possible if the Killing vectors K̄I are
H-invariant, i.e.

LFaK̄ β̄
I = 0 . (12)

In order to rewrite the Lagrangian (1) in terms of the lifted fields, we need a new
geometrical ingredient: a connection in the bundle π : N̄ → N . By this we mean the
following. The tangent space TpN̄ at p ∈ N̄ contains a subspace Vp = kerTπ, called
the vertical subspace, which is tangent to the orbit of H . One can take the vectors
Fa as a basis in Vp. There is, however, no preferred choice of a complementary
subspace in TpN̄ . A connection is precisely the assignment at each point p of a
“horizontal” subspace Hp such that Hp ⊕ Vp = TpN̄ and such that the distribution
of these spaces is H-invariant: for any h ∈ H , Hph = Hph.

These horizontal spaces can be defined as the kernels of a L(H)-valued one-form ω
called the connection form, with the properties that

ωa
ᾱFb
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G invariant: LK̄I
ωb

ᾱ = 0 . (15)

It follows from (13) that the G invariant tensors

V ᾱ
β̄ = Fa

ᾱωa
β̄ , (16)

H ᾱ
β̄ = δᾱ

β̄ − V ᾱ
β̄ , (17)

are the vertical and horizontal projectors.

Next we define the covariant derivative of ϕ̄ by

Dµϕ̄ᾱ = H ᾱ
β̄∂µϕ̄β̄

= ∂µϕ̄ᾱ − Ba
µFa

ᾱ(ϕ̄) , (18)

where

Ba
µ = ∂µϕ̄β̄ωa

β̄(ϕ) (19)

is a composite gauge potential which is inert under the global left G transformations,
and transforms as a gauge field under the composite local right H transformations:

δΛBa
µ = 0 ,

δηBa
µ = ∂µBa

η + fa
bcB

b
µηc . (20)

This result, together with (14) implies that the covariant derivative Dµϕ̄ᾱ transform
as

δΛDµϕ̄ᾱ = −ΛI∂β̄K̄ ᾱ
I Dµϕ̄β̄ , (21)

δηDµϕ̄ᾱ = ηa∂β̄F ᾱ
a Dµϕ̄β̄ . (22)

Let ḡ = ḡᾱβ̄ dȳᾱ ⊗ dȳβ̄ be a left G and right H invariant metric on N̄ , such that
V ⊥ H and that given any vectors (v, w) on N , and the unique vectors (v̄, w̄) on
N̄ which are horizontal and project to (v, w), then the inner product of v̄ and w̄
relative to ḡ must be equal to the inner product of v with w relative to g. The
Lagrangian of the lifted nonlinear sigma model can then be written as
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Let ḡ = ḡᾱβ̄ dȳᾱ ⊗ dȳβ̄ be a left G and right H invariant metric on N̄ , such that
V ⊥ H and that given any vectors (v, w) on N , and the unique vectors (v̄, w̄) on
N̄ which are horizontal and project to (v, w), then the inner product of v̄ and w̄
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β̄ − V ᾱ
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Let ḡ = ḡᾱβ̄ dȳᾱ ⊗ dȳβ̄ be a left G and right H invariant metric on N̄ , such that
V ⊥ H and that given any vectors (v, w) on N , and the unique vectors (v̄, w̄) on
N̄ which are horizontal and project to (v, w), then the inner product of v̄ and w̄
relative to ḡ must be equal to the inner product of v with w relative to g. The
Lagrangian of the lifted nonlinear sigma model can then be written as

7

Properties:    V⊥H, should agree with the metric on N

Lϕ̄ = −
1

2
ḡᾱβ̄(ϕ̄)Dµϕ̄ᾱDµϕ̄β̄ . (23)

Because of its gauge invariance this Lagrangian depends really only on ϕ and it can
be seen using (18) that it coincides with the Lagrangian (1).

We are now ready to couple fermions to the scalar fields. In the standard way of
doing this, one assumes that the fermions carry a representation ρ of the group H ,
so that when ϕ̄ undergoes (10), the fermion undergoes

δηψ = −ρ(η)ψ . (24)

(The minus sign is necessary to ensure that these transformations satisfy [δη1
, δη2

]ψ =
δ[η1,η2]ψ, in accordance with (10).)

At each point x in M the fermion is given by an equivalence class of pairs (ϕ̄(x), ψ(x))
under H . Therefore the fermion field can be thought of as a section of a vector
bundle associated to the pullback by ϕ of the principal H bundle N̄ → N . Note
therefore that one cannot define what the fermions are before having given a scalar
field configuration. This is in analogy with gravity where one cannot define what
the fermions are prior to having given a metric. Thus the configurations space of
scalars and fermions is not a product of the scalar and fermion configuration spaces,
but rather a fiber bundle over the scalar configuration space.

In the action, a natural coupling between scalars and fermions arises through the
gauge covariant derivative of ψ, which is defined by

Dµψ = ∂µψ + Ba
µTaψ . (25)

with Bµ defined as in (19). The fermionic kinetic term

Lψ = 1
2 ψ̄γµDµψ , (26)

is manifestly H-gauge invariant.

To summarize, the total Lagrangian in the lifted formulation is given by

L0 = −
1

2
ḡᾱβ̄(ϕ̄)Dµϕ̄ᾱDµϕ̄β̄ + 1

2 ψ̄γµDµψ , (27)

where the covariant derivatives are defined in (18) and (25).
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Because of the gauge invariance, this is equivalent to 
the original lagrangian. 



The gauging of a subgroup K of G:
4 Gauging K ⊆ G

We consider now the gauging of any subgroup of G, denoted by K, with generators
Ti (i = 1, ..., dimK). In particular, the group K can be chosen to be G or H . In
addition to the fields ϕα we have a dynamical L(G)-valued gauge field Aµ = Ai

µTi.
Under an infinitesimal local K-transformation we have

δΛϕ̄ᾱ = −Λi(x)K̄ ᾱ
i , (28)

δΛAi
µ = ∂µΛi + gf i

jkAj
µΛk , (29)

where g is the gauge coupling constant which will be set equal to 1 in the rest
of the paper. This definition is such that the algebra (4) is satisfied. A relative
sign between the two terms on the right hand side of (29) can be absorbed by a
redefinition of A. Note also that Ai

µ is η-invariant:

δηAi
µ = 0 . (30)

Next we define the G-covariant derivative of the lifted fields as

∇µϕ̄ᾱ = ∂µϕ̄ᾱ + Ai
µK̄ ᾱ

i (ϕ̄) . (31)

Upon using (10), (12) and (30) one verifies that

δΛ∇µϕ̄ᾱ = −Λi(x)∂β̄K̄ ᾱ
i ∇µϕ̄β̄ , (32)

δη∇µϕ̄ᾱ = (∂µηa)F ᾱ
a + ηa∂β̄F ᾱ

a ∇µϕ̄β̄ . (33)

Using these transformation properties, and (14), one can check that a composite H
gauge field defined by

Ba
µ = ∇µϕ̄ᾱωa

ᾱ , (34)

transform under the local left G and local right H transformation as

δΛBa
µ = 0 , (35)

δηBa
µ = ∂µηa + fa

bcBb
µηc , (36)
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← local 

where (14) and (13) have been used. It follows that if we define the expression

Dµϕ̄ᾱ = ∇µϕ̄ᾱ − Ba
µF ᾱ

a (ϕ̄) , (37)

it transforms as

δΛDµϕ̄ᾱ = −Λi(x)∂β̄K̄ ᾱ
I Dµϕ̄β̄ , (38)

δηDµϕ̄ᾱ = ηa∂β̄F ᾱ
a Dµϕ̄β̄ , (39)

so it deserves to be called the bi-covariant derivative of the lifted field. One can
now write the kinetic term in terms of the lifted fields. In particular, the covariant
derivative of the fermions takes the form

Dµψ = ∂µψ + Ba
µTaψ . (40)

Thus, a lifted gauged sigma model can be characterized by the Lagrangian

L = −
1

2
ḡᾱβ̄(ϕ̄)Dµϕ̄ᾱDµϕ̄β̄ +

1

2
ψ̄γµDµψ , (41)

where the fermions ψ carry a given representation of the group H .

5 Introducing a Gauge Invariant Potential

There is no unique way to construct a gauge invariant potential in the context of
bosonic sigma models. In the case of supersymmetric sigma models, however, the
requirement of supersymmetry is often powerful enough to determine uniquely the
form of the potential. In particular, when one gauges the automorphism group of
supergravity theories which either contain scalar fields or are coupled to matter
multiplets which contain scalar fields, the Noether procedure typically results in a
potential. The important building block for the potential arises in the process of
computing the supersymmetric variation of the gravitino kinetic term

Lψµ = 1
2eψ̄µγµνρDνψρ , (42)

where e is the determinant of the vielbein on M , and the covariant derivative
contains, in addition to the Lorentz connection, a composite gauge field Ba

µTa with
Ta in the fundamental representation of the automorphism group HAut. In any
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δΛϕ̄ᾱ = −Λi(x)K̄ ᾱ
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a + ηa∂β̄F ᾱ
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gauged sigma model action:
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 The gauge invariant potential:
No unique way to fix in bosonic theories 
Noether procedure (in general) uniquely fixes 
the potential in supersymmetric theories.

G/H models:

: G/H

LKI gαβ = 0 . (5)

If Λ is an element of L(G), the infinitesimal variation of the fields under global G
transformation is

δΛϕα = −ΛIKα
I (ϕ) , ∂µΛI = 0 . (6)

In general, acting on any function of the fields, δΛ = ΛIKα
I ∂α. Such variations

satisfy an algebra isomorphic to the abstract algebra L(G): [δΛ1
, δΛ2

] = δ[Λ1,Λ2].
Invariance of the action based on the Lagrangian (1) follows directly from using
(5).

3 Lifted Formulation and Coupling of Fermions

As we shall discuss later, in order to couple the system to fermions it is sometimes
necessary to use a different formulation of the theory, where there are more fields
than physical degrees of freedom. Some of the fields (or functions thereof) are then
gauge degrees of freedom. This is completely analogous to what happens in gravity,
where the coupling to fermions requires the use of the tetrad formalism.

The most general geometrical setup is to imagine a space N̄ with a map

π : N̄ → N , (7)

which is surjective. In the new formulation the basic variables will be fields ϕ̄ᾱ,
describing a map from spacetime into N̄ . Given this map ϕ̄, one can construct in a
unique way a map ϕ from spacetime into N by composing ϕ̄ with the projection π,
and the Lagrangian must be constructed in such a way that it has the same value
for any two maps ϕ̄ that project onto the same map ϕ.

This setup is unnecessarily general and in physical applications it is usually assumed
that the projection π amounts to factoring out the right action of some group H
acting on N̄ . In the following we assume this to be the case.

Given a map ϕ : M → N , we say that a map

ϕ̄ : M → N̄ , (8)

is a lift of ϕ if π
(
ϕ̄(x)

)
= ϕ(x). If ϕ̄ is a lift of ϕ, then also ϕ̄′, defined by

ϕ̄′(x) =
(
ϕ̄(x)

)
h(x) for some map h : M → H , is a lift of ϕ. Therefore, the lifted
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G=H⊕P

[H,H]∈H
[P,P]∈H

Coset structure in the algebra:

[H,P]∈P

: coset representative: G-valued

The group G acts on G/H from the left by g(g′H) = (gg′)H . On the group we
have left-invariant and right-invariant vector fields LI and RI . They are chosen to
agree at the identity: LI(e) = RI(e), and they commute: [LI , RI ] = 0. The vector
fields KI generating the left action of G are the projections of the right-invariant
vector fields RI under the map g → gH . We assume that the restriction to P of the
inner product in L(G) is Ad(H)-invariant; via standard theorems, this gives rise to
a G-invariant metric g = gαβ dyα ⊗ dyβ on G/H .

In the lifted formulation, we have N̄ = G, K̄I = RI (the right-invariant vector
fields on G) and Fa = La (the left-invariant vector fields on H). For the invariant
connection we take the L(H)-component of the left-invariant Maurer-Cartan form
g−1∂ᾱg on G. This example illustrates the reason why the groups are chosen to act
as they were. Traditionally one chooses to work with right cosets gH . This fixes
the action of H on G to be from the right. The remaining action of G on the coset
space is from the left. It arises from the action of G on itself from the left.

We shall now review a well-known way of writing sigma models in terms of matrices,
and recast the earlier results in this formalism. Traditionally one works in a gauge-
fixed version of the lifted formalism, the gauge fixing being given by a locally defined
section L : G/H → G. This section is just a choice of a coset representative for
each coset. In addition, as usual when working with groups, it is very convenient
to use matrix representations, so we also write L(y) for the matrix representing the
abstract group element L(y). Under the action of a group element g, y → y′ and

L(y′) = gL(y)h−1 , (89)

where h = h(g, y) is a compensating gauge transformation that restores the chosen
gauge. Infinitesimally, if g = 1+Λ, we can write h = 1+ v, where v = v(y, Λ) is the
matrix representing the Lie algebra element v that was defined in (57). Inserting
in (89) one gets the formula

Kα
i ∂αL = TiL − Lva

i Ta , (90)

which is just a matrix way of rewriting (57) (the right invariant vector field RI at
L(y) is represented by the matrix TIL(y) and so on).

The pull-back the Maurer-Cartan form by the section L can be decomposed as

L−1∂αL = V r
α Tr + Ba

αTa , (91)

where V r
α is the vielbein and Ba

α is a gauge potential on G/H . It is also convenient
to define

L−1∂µL = P r
µTr + Ba

µTa , (92)
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Construct Maurer Cartan form:

δηϕα = 0 , δηeα
β = ηα

γeγ
β , (82)

one finds again (36).

The fermions carry a representation of the group GL(n) and under (82) transform
as

δηψα = −ηα
βψβ . (83)

Under an infinitesimal isometry (28) with the attendant transformation (78) of the
linear frames, one finds

δΛψα = −Λi∂βKα
i ψβ . (84)

Eq. (40) becomes

Dµψα = ∂µψα + Dµϕγe−1α
δΓγ

δ
φeφ

λψλ + e−1α
γDµeγ

δψ
δ . (85)

Upon using the H gauge freedom one can choose eα
β = δα

β , in which case

Dµψα = ∂µψα + DµϕγΓγ
α

βψβ − Ai
µ∂βKα

i ψβ . (86)

Taking into account obvious notational differences (a redefinition of Λ by a sign),
this corresponds to the formula given in [7].

9 Gauged Sigma Models on G/H

The most frequently encountered sigma models are based on coset spaces. Let us
assume therefore that N = G/H , where the coset space G/H is reductive, i.e. there
exists an Ad(H)-invariant subspace P of L(G) such that

L(G) = L(H) ⊕ P . (87)

The space P can be identified with the tangent space to G/H at the coset eH . Note
that if the basis is chosen in such a way that {Ta} with a = 1, . . . , dim H is a basis
in L(H) and {Tr} with r = 1, . . . , dim G/H) is a basis in P , then

fab
r = 0 ; far

b = 0 . (88)
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The group G acts on G/H from the left by g(g′H) = (gg′)H . On the group we
have left-invariant and right-invariant vector fields LI and RI . They are chosen to
agree at the identity: LI(e) = RI(e), and they commute: [LI , RI ] = 0. The vector
fields KI generating the left action of G are the projections of the right-invariant
vector fields RI under the map g → gH . We assume that the restriction to P of the
inner product in L(G) is Ad(H)-invariant; via standard theorems, this gives rise to
a G-invariant metric g = gαβ dyα ⊗ dyβ on G/H .

In the lifted formulation, we have N̄ = G, K̄I = RI (the right-invariant vector
fields on G) and Fa = La (the left-invariant vector fields on H). For the invariant
connection we take the L(H)-component of the left-invariant Maurer-Cartan form
g−1∂ᾱg on G. This example illustrates the reason why the groups are chosen to act
as they were. Traditionally one chooses to work with right cosets gH . This fixes
the action of H on G to be from the right. The remaining action of G on the coset
space is from the left. It arises from the action of G on itself from the left.

We shall now review a well-known way of writing sigma models in terms of matrices,
and recast the earlier results in this formalism. Traditionally one works in a gauge-
fixed version of the lifted formalism, the gauge fixing being given by a locally defined
section L : G/H → G. This section is just a choice of a coset representative for
each coset. In addition, as usual when working with groups, it is very convenient
to use matrix representations, so we also write L(y) for the matrix representing the
abstract group element L(y). Under the action of a group element g, y → y′ and

L(y′) = gL(y)h−1 , (89)

where h = h(g, y) is a compensating gauge transformation that restores the chosen
gauge. Infinitesimally, if g = 1+Λ, we can write h = 1+ v, where v = v(y, Λ) is the
matrix representing the Lie algebra element v that was defined in (57). Inserting
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L(y) is represented by the matrix TIL(y) and so on).

The pull-back the Maurer-Cartan form by the section L can be decomposed as

L−1∂αL = V r
α Tr + Ba

αTa , (91)

where V r
α is the vielbein and Ba

α is a gauge potential on G/H . It is also convenient
to define

L−1∂µL = P r
µTr + Ba

µTa , (92)

19

The group G acts on G/H from the left by g(g′H) = (gg′)H . On the group we
have left-invariant and right-invariant vector fields LI and RI . They are chosen to
agree at the identity: LI(e) = RI(e), and they commute: [LI , RI ] = 0. The vector
fields KI generating the left action of G are the projections of the right-invariant
vector fields RI under the map g → gH . We assume that the restriction to P of the
inner product in L(G) is Ad(H)-invariant; via standard theorems, this gives rise to
a G-invariant metric g = gαβ dyα ⊗ dyβ on G/H .

In the lifted formulation, we have N̄ = G, K̄I = RI (the right-invariant vector
fields on G) and Fa = La (the left-invariant vector fields on H). For the invariant
connection we take the L(H)-component of the left-invariant Maurer-Cartan form
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:  vielbein

:  gauge potential



The group G acts on G/H from the left by g(g′H) = (gg′)H . On the group we
have left-invariant and right-invariant vector fields LI and RI . They are chosen to
agree at the identity: LI(e) = RI(e), and they commute: [LI , RI ] = 0. The vector
fields KI generating the left action of G are the projections of the right-invariant
vector fields RI under the map g → gH . We assume that the restriction to P of the
inner product in L(G) is Ad(H)-invariant; via standard theorems, this gives rise to
a G-invariant metric g = gαβ dyα ⊗ dyβ on G/H .

In the lifted formulation, we have N̄ = G, K̄I = RI (the right-invariant vector
fields on G) and Fa = La (the left-invariant vector fields on H). For the invariant
connection we take the L(H)-component of the left-invariant Maurer-Cartan form
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Spacetime pull backs:

where 

where

P r
µ = ∂µϕαV r

α , Ba
µ = ∂µϕαBa

α . (93)

It is easy to show that P r
µ transforms covariantly and Ba

µ as a gauge field under
the composite local H-transformations. Indeed, Ba

µ coincides with (19) in adapted
coordinates (see (55)).

The ungauged sigma model Lagrangian (27) can be written as

L0 = 1
2PµrP

µr + ψ̄γµ
(
∂µ + Ba

µTa

)
ψ . (94)

Upon the gauging of a subgroup K of G, the decomposition (92) has to be modified
as follows

L−1
(
∂µ + Ai

µTi

)
L = Pr

µTr + Ba
µTa . (95)

We will now show that the H-connection B takes the form given earlier in (64) and
that the quantity P r

µ can also be represented in terms of the covariant derivative of
the scalars. To this end, we multiply (90) with L−1 from the left and use (91) to
obtain

Kα
i V r

α =
(
L−1TiL

)r
, (96)

Kα
i ωa

α =
(
L−1TiL

)a − va
i . (97)

Using these relations in (95), we find

Pr
µ = DµϕαV r

α ,

Ba
µ = DµϕαBa

α + Ai
µva

i . (98)

As a by product, we find that the expression for the C-function given in (63) can
now be written as

Ca
i =

(
L−1TiL

)a
. (99)

In summary, the gauge invariant sigma model Lagrangian (61) can be written as

L = 1
2PµrPµr + ψ̄γµ

(
∂µ + Ba

µTa

)
ψ − trCiC

i . (100)
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ungauged sigma model
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The potential becomes a function of the so called 
C-functions:
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2 QAB
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L , (2.7)

AI
µ are the gauge fields of K × Sp(1)R. All gauge coupling constants are set equal to unity for
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2 σr
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4 e
1
2ϕ F I

µν F Iµν −2P aA
µ Pµ

aA −4 e−
1
2ϕ CI

ABCIAB , (2.17)
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20 The difficult part is to find a convenient parametrization
of the coset. 

Try to introduce coordinates covering 
the whole manifold.  



Example:

from a recent work with E. Sezgin and D. Jong
6D dyonic string with active hyperscalars,
 hep-th: 0608034
6D N=(1,0) gauged supergravity coupled to tensor and 
vector multiplets. 

Motivation: find the structure of the most general
supersymmetric solutions with active hyperscalars 
parametrizing a coset space. 



The coset space:

A Conventions

We use the spacetime signature (−+++++) and set ε+−ijkl = εijkl. We define Γ7 = Γ012345. The
supersymmetry parameter has the positive chirality: Γ7 ε = ε. Thus, Γµνρ = 1

6 εµνρσλτ Γσλτ Γ7,
and for a self-dual 3-form we have SµνρΓµνρε = 0.

The Hodge-dual of a p-form

F =
1

p!
dxµ1 ∧ · · · dxµpFµ1...µp , (A.1)

is calculated using

∗(dxµ1 ∧ · · · dxµp) =
1

(D − p)!
εν1...νD−p

µ1...µp dxν1 · · · dxνD−p . (A.2)

The ’t Hoof symbols are defined as

ρr
αβ = tr (σα T r σ̄β) , ηr′

αβ = tr (σ̄α T r′ σβ) , (A.3)

where σα = (1,−i%σ) are the constant van der Wardeen symbols for SO(4). These are real and
antisymmetric matrices. It is easily verified that ρr

αβ is anti-selfdual, while ηr′
αβ is selfdual. Their

further properties are

ρr
αγ (ρs)γβ = −δrsδαβ + εrst ρt

αβ , idem ηr′
αβ ,

ρr
αβρr

γδ = δαγδβδ − δαδδβγ − εαβγδ ,

ηr′
αβηr′

γδ = δαγδβδ − δαδδβγ + εαβγδ ,

εtrs(ρr)αβ (ρs)γδ = δβγ (ρt)αδ + 3 more , idem ηr′
αβ . (A.4)

For SU(2) triplets, we use the notation:

XAB = Xr T r
AB , Xr = 1

2XAB T r
AB. (A.5)

B The Gauged Maurer-Cartan Form and the C-Functions

A convenient choice for the Sp(nH , 1)/Sp(nH) × Sp(1) coset representative L is [41]

L = γ−1




1 t†

t Λ



 (B.1)

where t is an nH-component quaternionic vector tp (p = 1, ..., nH), and

γ = (1 − t† t)1/2 , Λ = γ (I − t t†)−1/2 . (B.2)

Here, I is an nH × nH unit matrix, and † refers to quaternionic conjugation, and it can be
verified that Λt = t. The gauged Maurer-Cartan form is defined as

L−1DµL =






Qµ P †
µ

Pµ Q′
µ




 , (B.3)
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Sp(n) can naturally be defined using quaternions. 

 n × n Hermitian matrix of quaternions 
non-compact Sp(n,1) can be defined similarly.

For the compact case the parametrization of coset
 was given by Gursey and Tze.

Non-compact generalization by Sezgin.
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The gauged Maurer-Cartan form:



where DµL is given in (2.7), with T r representing three anti-hermitian quaternions (in the matrix
representation of quaternions T r = −iσr/2) obeying

[T r, T s] = εrstT t (B.4)

and T I′ represents a subset of nH ×nH quaternion valued anti-hermitian matrices spanning the
algebra of the subgroup K ⊂ Sp(nH) that is being gauged. A direct computation gives

Qµ =
1

2
γ−2

(
Dµt†t − t†Dµt

)
− Ar

µT r (B.5)

Q′
µ = γ−2

(
−tDµt† + ΛDµΛ + 1

2∂µ(t†t)I
)
− AI′

µ T I′ , (B.6)

Pµ = γ−2ΛDµt , (B.7)

where
Dµt = ∂µt + t T rAr

µ − AI′
µ T I′ t . (B.8)

The C functions are easily computed to yield

Cr = L−1T rL = γ−2




T r T rt†

−tT r −tT rt†



 (B.9)

CI′ = L−1T I′L = γ−2




−t†T I′t −t†T I′Λ

ΛT I′t ΛT I′Λ



 (B.10)

C The Model for Sp(1, 1)/Sp(1)× Sp(1)R

This coset, which is equivalent to SO(4, 1)/SO(4), represents a 4-hyperboloid H4. In this case
we have a single quaternion t = φα σα, and the vielbein becomes

V A′A
α = γ−2 σA′A

α . (C.1)

It follows from the definitions (2.4) and (2.5) that

gαβ =
2

(1 − φ2)2
δαβ , Jr

αβ =
2 ρr

αβ

(1 − φ2)2
. (C.2)

We also introduce a basis in the tangent space of H4

Vα
α =

√
2

1 − φ2
δα
α . (C.3)

The Sp(1)R connection Qr
µ can be found from (B.5) as

Qr
µ = −2 tr (QµT r) =

1

1 − φ2

(
2ρr

αβ∂µφα φβ − Ar
µ

)
. (C.4)
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µ = −2 tr (QµT r) =

1

1 − φ2

(
2ρr

αβ∂µφα φβ − Ar
µ

)
. (C.4)
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C-functions:



Sp(1,1)/Sp(1)xSp(1)For the coset space

With the above results at hand, the Lagrangian can be written as

e−1L = R − 1
4(∂ϕ)2 − 1

2eϕ GµνρG
µνρ − 1

4 e
1
2ϕ F r

µν F rµν − 1
4 e

1
2ϕ F r′

µν F r′µν

−
4

(1 − φ2)2
DµφαDµφβ δαβ −

6e−
1
2ϕ

(1 − φ2)2

[
g2
R + g′2(φ2)2

]
, (C.5)

where the covariant derivatives are defined as

Dµφα = ∂µφα − 1
2gRAr

µ(ρr)αβ φβ − 1
2g′Ar′

µ (ηr′)αβ φβ, (C.6)

and we have re-introduced the gauge coupling constants gR and g′. The supersymmetry trans-
formation rules are

δψµ = Dµε + 1
48e

1
2ϕG+

νσρ Γνσρ Γµ ε , (C.7)

δχ = 1
4

(
Γµ∂µϕ − 1

6e
1
2ϕG−

µνρ Γµνρ
)

ε , (C.8)

δλr
A = −1

8F r
µνΓµνεA − gR

e−
1
2ϕ

1 − φ2
T r

AB εB , (C.9)

δλr′
A = −1

8F r′
µνΓµνεA + g′e−

1
2ϕ φαφβ

1 − φ2
(σ̄αT r′σβ)AB εB , (C.10)

δψA′

=
1

1 − φ2
Dµφα σA′A

a εA , (C.11)

where DµεA = ∇µεA + Qr
µ(T r)ABεB , with ∇µ containing the standard torsion-free Lorentz

connection only, and Qr is defined in (C.4).
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V=

φ is a vector parametrizing 4-dim. hyperboloid. 
For higher dimensional cases, the potential is much 
more complicated.

However, it has a stable global minimum at t=0.  



The D=6 model:

Next, we define the components of the gauged Maurer-Cartan form as

L−1DµL = P aA
µ TaA + 1

2 Qab
µ Tab + 1

2 QAB
µ TAB , (2.6)

where
DµL =

(
∂µ − AI

µT I
)

L , (2.7)

AI
µ are the gauge fields of K × Sp(1)R. All gauge coupling constants are set equal to unity for

simplicity in notation. They can straightforwardly be re-instated. We also use the notation

T I = (T I′ , T r) , Tr = 2TAB
r TAB , T r

AB = − i
2 σr

AB , r = 1, 2, 3 . (2.8)

The components of the Maurer-Cartan form can be expressed in terms of the covariant derivative
of the scalar fields as follows [38]

P aA
µ = (Dµφα)V aA

α , Qab
µ = (Dµφα)Qab

α − Aab
µ , QAB

µ = (Dµφα)QAB
α − AAB

µ , (2.9)

where
Dµφα = ∂µφα − AI

µKIα , (2.10)

and KI(φ) are the Killing vectors that generate the K × Sp(1)R transformations on G/H.

Other building blocks to define the model are certain C-functions on the coset. These were
defined in [3], and studied further in [38] where it was shown that they can be expressed as

L−1T IL ≡ CI = CIaATaA + 1
2CIABTAB + 1

2CIabTab . (2.11)

Differentiating and using the algebra (2.3) gives the useful relation

DµCI =
(
P a

µ BCIAB + Pµb
ACIab

)
TaA + P aA

µ CI
a

B TAB + P aA
µ CIb

A Tab . (2.12)

Moreover, using (2.6) and (2.9) we learn that

KIαV aA
α = CIaA , KIαQab

α = CIab − δII′T ab
I′ , KIαQAB

α = CIAB − δIr TAB
r . (2.13)

Finally, it is straightforward and useful to derive the identities

D[µP aA
ν] = −1

2 F I
µνCIaA , (2.14)

P aA
[µ P b

ν]A = 1
2 Qab

µν + 1
2F I

µνCIab , (2.15)

P aA
[µ Pν]a

B = 1
2 QAB

µν + 1
2F I

µνCIAB . (2.16)

2.2 Field Equations and Supersymmetry Transformation Rules

The Lagrangian for the anomaly free model we are studying can be obtained from [2] or [3]. We
shall use the latter in the absence of Lorentz Chern-Simons terms and Green-Schwarz anomaly
counterterms. Thus, the bosonic sector of the Lagrangian is given by [3]

e−1L = R − 1
4(∂ϕ)2 − 1

12eϕ GµνρG
µνρ − 1

4 e
1
2ϕ F I

µν F Iµν −2P aA
µ Pµ

aA −4 e−
1
2ϕ CI

ABCIAB , (2.17)
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where the Yang-Mills field strength is defined by F I = dAI + 1
2f IJKAJ ∧ AK and G obeys the

Bianchi identity
dG = 1

2F I ∧ F I . (2.18)

The bosonic field equations following from the above Lagrangian are [3]

Rµν = 1
4∂µϕ∂νϕ + 1

2e
1
2ϕ (F 2

µν − 1
8F 2 gµν) + 1

4eϕ (G2
µν − 1

6G2 gµν)

−2P aA
µ PνaA + e−

1
2ϕ(CI

ABCIAB) gµν ,

ϕ = 1
4e

1
2ϕ F 2 + 1

6eϕ G2 − 4 e−
1
2ϕ CI

ABCIAB

Dρ(e
1
2ϕ F Iρ

µ) = 1
2eϕ F IρσGρσµ + 4P aA

µ CI
aA ,

∇ρ (eϕ Gρ
µν) = 0 ,

DµPµaA = 4e−
1
2ϕCIABCIa

B , (2.19)

where we have used a notation V 2
µν = Vµλ2...λpVν

λ2...λp and V 2 = gµνVµν for a p-form V , and

F 2 = F I
µνFµνI . The local supersymmetry transformations of the fermions, up to cubic fermion

terms that will not effect our results for the Killing spinors, are given by [3]

δψµ = Dµε + 1
48e

1
2ϕG+

νσρ Γνσρ Γµ ε , (2.20)

δχ = 1
4

(
Γµ∂µϕ − 1

6e
1
2ϕG−

µνρ Γµνρ
)

ε , (2.21)

δλI
A = −1

8F I
µνΓµνεA − e−

1
2ϕCI

AB εB , (2.22)

δψa = P aA
µ ΓµεA , (2.23)

where DµεA = ∇µεA + QµA
BεB , with ∇µ containing the standard torsion-free Lorentz connec-

tion only. The transformation rules for the gauge fermions differ from those in [2] by a field
redefinition.

3 Killing Spinor Conditions

The Killing spinor in the present context is defined to be the spinor of the supersymmetry
transformations which satisfies the vanishing of the supersymmetric variations of all the spinors
in the model. The well known advantage of seeking such spinors is that the necessary and
sufficient conditions for their existence are first order equations which are much easier than the
second order field equations, and moreover, once they are solved, the integrability conditions
for their existence can be shown to imply most of the field equations automatically. In deriving
the necessary and sufficient conditions for the existence of Killing spinors, it is convenient to
begin with the construction of the nonvanishing fermionic bilinears, which provide a convenient
tool for analyzing these conditions. In this section, firstly the construction and analysis of the
fermionic bilinears are given, and then all the necessary and sufficient conditions for the existence
of Killing spinor are derived.

7

Higher dimensional origin is not known!!

The solution with active hyperscalars:



Conditions from the existence of a Killing spinor: 

There exists a null Killing vector:
There exists a quaternionic structure obeying

3.1 Fermionic Bilinears and Their Algebraic Properties

There are only two nonvanishing fermionic bilinears that can be constructed from commuting

symplectic-Majorana spinor εA. These are:

ε̄AΓµεB ≡ V AB
µ ,

ε̄AΓµνρε
B ≡ Xr

µνρT
AB
r . (3.1)

Note that Xr is a self-dual three-form due to chirality properties. From the Fierz identity
Γµ(αβΓµ

γ)δ = 0, it follows that

V µVµ = 0 , iV Xr = 0 . (3.2)

Introducing the orthonormal basis

ds2 = 2e+e− + eiei , (3.3)

and identifying
e+ = V , (3.4)

the equation iV Xr = 0 and self-duality of Xr yield

Xr = 2V ∧ Ir , (3.5)

where
Ir = 1

2Ir
ij ei ∧ ej (3.6)

is anti-self dual in the 4-dimensional metric ds2
4 = eiei. Straightforward manipulations involving

Fierz identities imply that Ir are quaternionic structures obeying the defining relation

(Ir)ik (Is)kj = εrst(It)ij − δrsδi
j . (3.7)

Finally, using the Fierz identity Γµ(αβΓµ
γ)δ = 0 once more, one finds that

VµΓµε = Γ+ε = 0 . (3.8)

If there exists more than one linearly independent Killing spinor, one can construct as many
linearly independent null vectors. In this case (3.8) is obeyed by each Killing spinor and the
corresponding null vector, i.e. V 1

µ Γµε1 = 0, V 2
µ Γµε2 = 0, but it may be that V 1

µ Γµε2 $= 0 and/or
V 2

µ Γµε1 $= 0. In that case, (3.8) should be relaxed since ε should be considered as a linear
combination of ε1 and ε2.

3.2 Conditions From δλI = 0

Multiplying (2.22) with ε̄BΓρ, we obtain

iV F I = 0 , (3.9)

F IijIr
ij = 4e−

1
2ϕ CIr . (3.10)
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Conditions from the hyperfermion variation: 

The second has been simplified by making use of (3.9) and (3.5). Multiplying (2.22) with ε̄BΓλτρ,
on the other hand, gives

F I ∧ V + "(F I ∧ V ) + 2e
1
2ϕ CIrXr = 0 , (3.11)

3
4F Iσ

[µXr
νρ]σ + 1

2εrste−
1
2ϕCIsXt

µνρ = 0 . (3.12)

One can show that these two equations are identically satisfied upon the use of (3.9) and (3.10),
which, in turn imply that F must take the form

F I = −e−
1
2ϕ CIrIr + F̃ I + V ∧ ωI , (3.13)

where F̃ I = 1
2 F̃ I

ij ei ∧ ej is self-dual, and ωI = ωI
i ei. Reinstating the gauge coupling constants,

we note that the C-function dependent term will be absent when the index I points in the
direction of a subgroup of K ⊂ Sp(2nH) under which all the hyperscalars are neutral.

Substituting (3.13) into the supersymmetry transformation rule, and recalling (3.8), one finds
that (2.22) gives the additional conditions on the Killing spinor

(
1
8Ir

ijΓ
ijδA

B − T rA
B

)
εB = 0 . (3.14)

The contribution from F̃ drops out due to chirality-duality properties involved. Writing this
equation as Orε = 0, one can check that [Or,Os] = εrstOt. Thus, any two projection imply the
third one.

In summary, the necessary and sufficient conditions for δλI = 0 are (3.13) and (3.14).

3.3 Conditions From δψa = 0

This time multiplying (2.22) with ε̄B and ε̄BΓλτ gives rise to four equations which can be shown
to imply

V µP aA
µ = 0 , (3.15)

P aA
i = 2(Ir)i

j (T r)AB P aB
j . (3.16)

Using (2.5) and (2.9), we can equivalently reexpress the second equation above as

Diφ
α = (Ir)i

j (Jr)β
α Djφ

β . (3.17)

Writing (3.16) as P a = OP a, we find that (O − 1)(O − 3) = 0. Thus, (3.16) implies that P a is
an eigenvector of O with eigenvalue one. Moreover, using (3.16) directly in the supersymmetry
transformation rule (2.23), and using the projection condition (3.14), we find that δψa = 3δψa,
and hence vanishing.

In summary, the necessary and sufficient conditions for δψa = 0 are (3.15), (3.16) (or equivalently
(3.17)), together with the projection condition (3.14).

3.4 Conditions From δχ = 0

The analysis for this case is identical to that given in [18], so we will skip the details, referring
to this paper. Multiplying (2.21) with ε̄B and ε̄BΓλτ gives four equations which can be satisfied
by

V µ∂µϕ = 0 , (3.18)

9

First order equation for scalars, similar to a 
holomorphicity condition. 



Ansatz:

scalar map is a submersion (i.e. when the rank of the matrix ∂µφα is equal to the dimension of
the scalar manifold). In our model, however, the scalar field equation is automatically satisfied
as a consequence of the Killing spinor integrability conditions, without having to impose such
requirements. This is all the more remarkable given the fact that there are contributions to the
energy-momentum tensor from fields other than the scalars.

Finally, in analyzing the set of equations summarized above for finding a supersymmetric solu-
tion, it is convenient to parametrize the metric, which admits a null Killing vector, in general
as [17]

ds2 = 2H−1(du + β)
(

dv + ω +
F
2

(du + β)
)

+ Hds2
B , (4.8)

with

e+ = H−1(du + β) ,

e− = dv + ω + 1
2FHe+ ,

ei = H1/2ẽα
idyα , (4.9)

where ds2
B = hαβdyαdyβ is the metric on the base space B, and we have β = βαdyα and

ω = ωαdyα as 1-forms on B. These quantities as well as the functions H and F depend on u
and y but not on v. Now, as in [17], defining the 2-forms on B by

J̃r = H−1Ir , (4.10)

these obey
(J̃r)αγ (J̃s)γβ = εrst(J̃ t)αβ − δrsδα

β , (4.11)

where raising and lowering of the indices is understood to be made with hαβ . Note that the
index α = 1, ..., 4 labels the coordinates yα on the base space B. This should not be confused
with the index α = 1, ..., nH that labels the coordinates φα of the scalar manifold!

A geometrically significant equation satisfied by J̃r can be obtained from (3.21), and with the
help of (3.20) it takes the form [18],

∇̃iJ̃
r
jk + εrstQs

i J̃
t
jk − βi

˙̃J
r

jk − β̇[jJ̃
r
k]i + δi[jβ̇

mJ̃r
k]m = 0 , (4.12)

where ∇̃i is the covariant derivative on the base space B with the metric ds2
B and β̇ ≡ ∂uβ.

5 The Dyonic String Solution

For the string solution we shall activate only four hyperscalars, setting all the rest equal to zero.
In the quaternionic notation of Appendix B, this means

t =





φ
0
...
0




(5.1)

In what follows we shall use the map

φ = φA′A = φα(σα)A
′A , (5.2)
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and we have defined
ϕ± := ±1

2ϕ + ln H . (5.14)

Next, we turn to the supersymmetry condition (3.17) in the hyperscalar sector. With our ansatz
described so far, it can now be written as

Diφ
α = (J̃r)i

j (Jr)β
α Djφ

β , (5.15)

where
Diφ

α ≡ Diφ
α Vα

α , (5.16)

and Vα
α is the vielbein on H4, and the above equations are in the basis

ẽi = δi
α Ω dyα , (5.17)

referring to the base space B. We also note that

Jr
αβ = ρr

αβ δα
α δβ

β , (5.18)

which follows from rom (C.2) and (C.3). Recall that the ’t Hooft matrices ρr
αβ are constants.

Next, we choose the components of J̃r
ij to be constants and make the identification

J̃r = Jr . (5.19)

Using the quaternion algebra, we can now rewrite (5.15) as

Diφβ =
(
δiαδj β − δjαδiβ − εijαβ

)
Djφα . (5.20)

Symmetric and antisymmetric parts in i and β give

Diφ
i = 0 , φi ≡ φα δi

α , (5.21)

Diφj − Djφi = −εijk#Dkφ# . (5.22)

To solve these equations, we make the ansatz

φα = fyα , Ar
α = g ρr

αβ yβ , (5.23)

where f and g are functions of y2. This ansatz, in particular, implies that the function ωr

arising in the general form of F r given in (3.13) vanishes. Assuming that the map φα is 1-
1, one can actually use diffeomorphism invariance to set (at least locally) f = 1. However,
since we have already fixed the form of the metric as in (5.8), chosen a basis as in (5.17), and
identified the components of the quaternionic structures J̃r

ij referring to this orthonormal basis,
the reparametrization invariance has been lost. Therefore it is important to keep the freedom
of having an arbitrary function in the map (5.23).

Using (5.23) we find that (5.22) is identically satisfied and (5.21) implies

g =
4f ′y2 + 8f

3fy2
, (5.24)

where prime denotes derivative with respect to argument, i.e. y2. Next, the computation of the
Yang-Mills field strength from the potential (5.23) gives the result

F r = F r(+) + F r(−) , F r± = ± (4 F r± , (5.25)

F r(−)
αβ = (−2g − g′y2 + 1

2g2y2) ρr
αβ ,

F r(+)
αβ ≡ F̃ r

αβ = (2g′ + g2)
(
2y[αyδ ρr

β]δ + 1
2y2 ρr

αβ

)
.
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2+4 split of the geometry, identity map: 



energy momentum tensor, which takes the form (trPiPj − 1
2gijtrP 2), does not vanish since the

solution gives

PA′A
i =

a

3y2
(
1 − a2

y2

)
(

δα
i − 4

yiyα

y2

)
σA′A

α . (5.46)

It is possible to apply a coordinate transformation and map the base space into the disc by
defining

zα ≡
ayα

y2
. (5.47)

In zα coordinates the solution becomes

ds2 = e−
1
2ϕ+e−

1
2ϕ−(−dt2 + dx2) + L2e

1
2ϕ+e

1
2ϕ− h2/3 (dr2 + r2dΩ2

3) (5.48)

eϕ = eϕ+/eϕ− , (5.49)

G = 8
27 Ω3 − dt ∧ dx ∧ de−ϕ+ , (5.50)

Ar = 2
3 r2σr

R , (5.51)

φα = zα , (5.52)

where

r =
√

zαzβδαβ , Ω3 = σ1
R ∧ σ2

R ∧ σ3
R , h =

1

r2
− 1 , (5.53)

eϕ+ =
3νh1/3

L2
+ ν0 , eϕ− =

4h1/3

9L2
, (5.54)

and L ≡ b/a. Here, σr
R are the right-invariant one-forms satisfying

dσr
R = 1

2εrst σs
R ∧ σt

R , (5.55)

and Ω3 is the volume form on S3. We have also used the definitions

zα = r nα , nαnβδαβ = 1 , (5.56)

where dnα are orthogonal to the unit vectors nα on the 3-sphere, and satisfy

dnα = 1
2ρrα

β σr
R nβ , dnαdnβδαβ = 1

4dΩ2
3 . (5.57)

Given the form of Ar, it is easy to see that the Yang-Mills 2-form F r = dAr − 1
2εrstAs ∧ At is

not (anti)self-dual, as it is given by

F r = 4
3 rdr ∧ σr

R + 1
3r2

(
1 − 2

3r2
)

εrstσs
R ∧ σt

R . (5.58)

The field strength PA′A
i on the other hand, takes the form

PA′A
i =

1

1 − r2

[
(1 − 2

3r2)δα
i + 2

3r2nin
α
]

σA′A
α . (5.59)

We emphasize that, had we started with the identity map φα = zα from the beginning, the
orthonormal basis in which J̃r

ij are constants would be more complicated than the one given in
(5.17). Consequently, (5.28) would change since it uses (5.10) that requires the computation of
the spin connection in the new orthonormal basis.
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energy momentum tensor, which takes the form (trPiPj − 1
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solution gives
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a

3y2
(
1 − a2

y2
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δα
i − 4

yiyα

y2
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σA′A

α . (5.46)
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y2
. (5.47)
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1
2ϕ+e
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3) (5.48)
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27 Ω3 − dt ∧ dx ∧ de−ϕ+ , (5.50)

Ar = 2
3 r2σr

R , (5.51)
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