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Abstract

The theory of external symmetry in curved spacetimes we have proposed few years ago allows us to
correctly define the operators of the quantum field theory on curved backgrounds. Particularly, despite of
some doubts appeared in literature, we have shown that a well-defined energy operator can be considered
on the de Sitter manifold. With its help new quantum modes were obtained for the scalar, Dirac and vector
fields on the de Sitter spacetimes. A short review of these results is presented in this report.
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Symmetries and conserved observables

The quantum field theory on curved manifolds must be build in local
(unholonomic) frames where the spin half can be well-defined.

The relativistic covariance and the gauge symmetry

Let us consider the manifold (M, g) and a local chart (or natural frame) {x} of
coordinates xµ ( µ, ν, .. = 0, 1, 2, 3). The general relativistic covariance preserves
the form of the field equations under any coordinate transformation x → x′ = φ(x).

The local frames are given by the tetrad fields eµ̂(x) and êµ̂(x), labeled by the local

indices α̂, β̂, ... = 0, 1, 2, 3, which have the usual duality and orthonormalization
properties

êµ̂
α eα

ν̂ = δµ̂
ν̂ , êµ̂

α eβ
µ̂ = δβ

α , eµ̂ · eν̂ = ηµ̂ν̂ , êµ̂ · êν̂ = ηµ̂ν̂ , (1)

where η =diag(1,−1,−1,−1) is the Minkowski metric. This metric remains invariant

under the transformations Λ[A(ω)] of the gauge group G(η) = L↑+ corresponding to
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the transformations A(ω) ∈ SL(2,C) through the canonical homomorphism. In the

standard parametrization, with ωα̂β̂ = −ωβ̂α̂, we have

A(ω) = e−
i
2ω

α̂β̂Sα̂β̂ , (2)

where Sα̂β̂ are the covariant basis-generators of the sl(2,C) algebra. For small values

of ωα̂β̂ the matrix elements of Λ can be written as

Λ[A(ω)]µ̂ ·· ν̂ = δµ̂
ν̂ + ωµ̂ ·

· ν̂ + · · · . (3)

The theory contains matter fields ψ transforming according to a representation ρ of
the SL(2,C) group. The entire theory must be gauge invariant in the sense that it
remains invariant when one performs a gauge transformation

ψ(x) → ψ′(x) = ρ[A(x)]ψ(x) (4)

eα̂(x) → e′α̂(x) = Λ· β̂α̂ ·[A(x)]eβ̂(x) (5)

produced by the point-dependent transformations A(x) ∈ SL(2,C) and Λ[A(x)] ∈
L↑+.

The general relativistic covariance as well as the tetrad-gauge invariance
are not able to give rise to conserved quantities. These are produced by
isometries.
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The external symmetry

In general, (M, g) can have isometries that form the isometry group I(M) whose
parameters are denotad by ξa (a, b, ... = 1..N ). Given an isometry φξ ∈ I(M) then,
for each parameter ξa, there exists an associated Killing vector field defined as

Ka = ∂ξa
φξ|ξ=0. (6)

Starting with an isometry x → x′ = φξ(x) we introduced the so called external
symmetry transformations, (Aξ, φξ), defined as combined transformations involving
gauge transformations necessary to preserve the gauge [1],

Λ[Aξ(x)]α̂ ·· β̂ = êα̂
µ[φξ(x)]

∂φµ
ξ (x)

∂xν
eν
β̂
(x) , (7)

with the supplementary condition Aξ=0(x) = 1 ∈ SL(2,C). The transformations
(Aξ, φξ) leave the field equation invariant and constitute the group of external
symmetry , S(M), which is the universal covering group of I(M).
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The transformations of the group S(M) are

(Aξ, φξ) :

x → x′ = φξ(x)
e(x) → e′(x′) = e[φξ(x)]
ê(x) → ê′(x′) = ê[φξ(x)]
ψ(x) → ψ′(x′) = ρ[Aξ(x)]ψ(x) .

(8)

In [11] we presented arguments that S(M) is the universal covering group of I(M).

For small ξa the covariant SL(2,C) parameters of Aξ(x) ≡ A[ωξ(x)] can be

expanded as ωα̂β̂
ξ (x) = ξaΩα̂β̂

a (x) + · · · where the functions

Ωα̂β̂
a ≡ ∂ωα̂β̂

ξ

∂ξa |ξ=0

=
(
êα̂
µ Kµ

a,ν + êα̂
ν,µK

µ
a

)
eν
λ̂
ηλ̂β̂ . (9)

depend on the Killing vectors (6).
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The generators of any representation

The matter field ψ transforms according to the operator-valued representation
(Aξ, φξ) → T ρ

ξ which is defined as

(T ρ
ξ ψ)[φξ(x)] = ρ[Aξ(x)]ψ(x) (10)

and leaves invariant the field equation in local frames, T ρ
ξ E(T ρ

ξ )
−1

= E.

The basis-generators of the representations ρ of the s(M) algebra,

Xρ
a = i

∂T ρ
ξ

∂ξa |ξ=0

= La + Sρ
a , (11)

are formed by orbital parts, La = −iKµ
a ∂µ, and spin terms [1],

Sρ
a(x) = i

∂Aξ(x)

∂ξa |ξ=0

=
1

2
Ωα̂β̂

a (x)ρ(Sα̂β̂) , (12)
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that depend on the functions (9). These operators can be written in covariant form
according to the Carter and McLenaghan formula [2]

Xρ
a = −iKµ

a Dρ
µ +

1

2
Ka µ;ν eµ

α̂ eν
β̂
ρ(Sα̂β̂) . (13)

where Dρ
µ are the covariant derivatives in local frames associated to the representation

ρ of SL(2,C).

However, whenever the mater fields are vector and tensors, then the basis-generators
of a tensor representation ρn of the rank n can be written in natural frames,

Xn
a = −iKµ

a∇µ +
1

2
Ka µ; ν ρn(S̃

µν) , (14)

where ∇µ are the usual covariant derivatives. The point-dependent generators S̃(x)
are defined as

(S̃µν)σ ·· τ = eµ
α̂e

ν
β̂
eσ
γ̂ [ρv(S

α̂β̂)]γ̂ ·· δ̂ ê
δ̂
τ = i(gµσδν

τ − gνσδµ
τ ) . (15)

We say that the operators (25) and (26) are conserved operators since
they commute with the operators of the field equations.
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The de Sitter spacetime

Let (M, g) be the de Sitter (dS) spacetime defined as a hyperboloid in the (1 + 4) -
dimensional flat spacetime, (5M,5 η), of coordinates zA, A,B, ... = 0, 1, 2, 3, 5, and
metric 5η = diag(1,−1,−1,−1,−1),

5ηABzAzB = −R2 , R = 1/ω =
√

3/|Λc| . (16)

The gauge group of the metric 5η plays the role of isometry group of the dS manifold,
G[5η] = I(M) = SO(1, 4). We use covariant real parameters, 5ω

AB = −5ω
BA,

since in this parametrization the orbital basis-generators of the scalar representation of
G(5η), carried by the spaces of functions over 5M , has the usual form

5LAB = i
[
5ηAC zC∂B − 5ηBC zC∂A

]
. (17)

A local chart {x} on (M, g), of coordinates xµ, µ, ν, ... = 0, 1, 2, 3, is defined
by the functions zA = zA(x). The identification 5LAB = −iKµ

(AB)∂µ defines the

components in the chart {x} of the Killing vector field K(AB) associated to 5ω
AB.
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Static charts

with conformal spherical line element:
1. Cartesian coordinates: {ts, ~xs}
2. spherical coordinates: {ts, rs, θ, φ}

ds2 =
1

cosh2 ωrs

[
dt2

s − dr2
s −

1

ω2
sinh2 ωrs (dθ2 + sin2 θ dφ2)

]
, (18)

with finite event horizon at ωr̂s = 1: 1. Cartesian coordinates: {ts, ~̂xs}
2. spherical coordinates: {ts, r̂s, θ, φ}

ds2 = (1− ω2r̂2
s)dt2

s −
dr̂2

s

1− ω2r̂2
s

− r̂2
s(dθ2 + sin2 θ dφ2) , (19)

where
ωr̂s = tanh ωrs . (20)
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Moving charts

with FRW line element, proper time and:
1. Cartesian coordinates: {t, ~x}
2. spherical coordinates: {t, r, θ, φ}

ds2 = dt2 − e2ωtd~x · d~x = dt2 − e2ωt[dr2 + r2(dθ2 + sin2 θ dφ2)]. (21)

with conformal flat line element and:
1. Cartesian coordinates: {tc, ~x}
2. spherical coordinates: {tc, r, θ, φ}

ds2 =
1

ω2t2
c

(dt2
c − d~x · d~x) =

1

ω2t2
c

[dt2
c − dr2 − r2(dθ2 + sin2 θ dφ2)]. (22)

where ωtc = −e−ωt and:

ts = t− 1

2ω
ln

(
1− ω2r2e2ωt

)
, rs =

1

2ω
ln

1 + ωreωt

1− ωreωt
, r̂s = reωt . (23)
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The principal observables on the de Sitter spacetime

In the case of the dS spacetime, in a chart where we consider the tetrad fields e and
ê, we identify ξa → 5ω

AB and a → (AB) such that the generators of an arbitrary
representation ρ read

Xρ
(AB) = L(AB) + Sρ

(AB) = −iKµ
(AB)∂µ +

1

2
Ωα̂β̂

(AB)ρ(Sα̂β̂) . (24)

The covariant forms can be written in local frames,

Xρ
(AB) = −iKµ

(AB)D
ρ
µ +

1

2
K(AB) µ;ν eµ

α̂ eν
β̂
ρ(Sα̂β̂) , (25)

for any field or even in natural frames but only for the vector and tensor fields,

Xn
(AB) = −iKµ

(AB)∇µ +
1

2
K(AB) µ; ν ρn(S̃

µν) . (26)
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name {ts, ~xs} {t, ~x} {tc, ~x}
definition any gauge diagonal gauge diagonal gauge
Energy:
H = ωX(05) = i∂ts = i∂t − iωxi∂i −iω(tc∂tc + xi∂i)
Momentum:
Pi = ω(X(5i) −X(0i)) Ref. [1] = −i∂i id.
Angular momentum:
Jij = X(ij) sim. = −i(xi∂j − xj∂i) + ρ(Sij) id.

More three generators:
Ni = ω(X(5i) + X(0i)) do not have an immediate physical meaning.

The specific features:
1. The momentum and energy operators do not commute among
themselves,

[H, Pi] = iωPi . (27)
2. The energy operator H is well-defined only on restricted domains where
K(05) is time-like. For this reason some people asks whether and how the
energy can be measured.
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The problem of the energy operator

Where the Killing vector K(05) is time-like ?

chart {ts, ~̂xs} {ts, ~xs} {t, ~x} {tc, ~x}

light-cone domain (ωr̂s < 1)e.h. rs < |ts| ωreωt < 1 r < |tc|

K(05) (− 1
ω, 0, 0, 0) (− 1

ω, 0, 0, 0) (− 1
ω, x1, x2, x3) (tc, x

1, x2, x3)

g(K(05), K(05)) > 0 1− ω2r̂2
s > 0 rs > 0 1

ω2 − r2e2ωt > 0 t2
c − r2 > 0

Conclusions:

1. The Killing vector K(05) is time-like inside the light-cone of any given
chart.

2. The energy operator H is well-defined on the entire domain where an
observer can measure physical events.
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Quantum modes on the de Sitter manifold

The quantum modes are determined by complete systems of commuting operators
(c.s.c.o.) formed by the operator of the field equation E - of the scalar (S), Proca (V),
Maxwell (M) and Dirac (D) - and various generators commuting with E. Among them we
consider the operators H , Pi, Ji = 1

2εijkJjk = Li + ρ(Si) and the helicity operator,

W = ~P · ~J . (28)

The operator of the momentum direction,
~̂
P , is no longer a differential one being defined

as

Pi = P̂i

√
~P 2 . (29)

In addition we define the normalized helicity operator

Ŵ =
~̂
P · ~J . (30)

These operators obey the following commutation rules:

[H, W ] = iωW , [H, P̂i] = 0 , [H, Ŵ ] = 0 . (31)
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The analytically solvable scalar quantum modes

chart/c.s.c.o. {ES, H, ~L2, L3} {ES, ~P 2, ~L2, L3} {ES, Pi} {ES, H, P̂i}

spherical waves spherical waves plane waves plane waves

{ts, rs, θ, φ}. Avis, Isham, Storey, [3] ? no no

{t, ~x}, {tc, ~x} no no Chernikov, Tagirov [4] Cotaescu [5]

The analytically solvable vector quantum modes

chart/c.s.c.o. {EV , H, ~J2, J3} {EV , ~P 2, ~J2, J3} {EV , Pi,W} {EV , H, P̂i, Ŵ}

spherical waves spherical waves plane waves plane waves

{ts, rs, θ, φ}. Higuchi [6] ? no no

{t, ~x}, {tc, ~x} no no Cotaescu [7] (m = 0) Cotaescu [8]
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The analytically solvable Dirac quantum modes

chart/c.s.c.o. {ED, H, ~J2, K, J3} {ED, ~P 2, ~J2, K, J3} {ED, Pi,W} {ED, H, P̂i, Ŵ}
gauge

spherical waves spherical waves plane waves plane waves

{ts, rs, θ, φ}. Otchik [9] ? no no
diagonal gauge

{ts, rs, θ, φ}. Cotaescu [10] ? no no
Cartesian gauge

{t, r, θ, φ} Cotaescu [14] Shishkin [12] no no
Cartesian gauge Cotaescu [13]

{t, ~x}, {tc, ~x} no no Cotaescu [11] Cotaescu [14]
diagonal gauge

where K is the Dirac angular operator.
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The free quantum fields in moving charts

In the moving charts, {t, ~x} and {tc, ~x}, the principal quantum fields minimally coupled
to gravity can be expanded as mode integrals in the momentum basis.

The massive charged scalar field

The scalar field φ satisfy the Klein-Gordon equation(
∂2

t − e−2ωt∆ + 3ω∂t + m2
)
φ(x) = 0 . (32)

The expansion in the momentum basis,

φ(x) = φ(+)(x) + φ(−)(x) =

∫
d3p

[
f~p(x)a(~p) + f ∗~p (x)b∗(~p)

]
, (33)

can be done using the fundamental solutions

f~p(x) =
1

2

√
π

ω

1

(2π)3/2
e−3ωt/2Zk

(p

ω
e−ωt

)
ei~p·~x , Zk(s) = e−πk/2H

(1)
ik (s)

(34)
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where k =
√

m2

ω2 − 9
4. These modes satisfy the orthonormalization relations

〈f~p, f~p′〉 = −〈f ∗~p , f ∗~p′〉 = δ3(~p− ~p′) , 〈f~p, f
∗
~p′〉 = 0 , (35)

with respect to the relativistic scalar product

〈φ, φ′〉 = i

∫
d3x e3ωt φ∗(x)

↔
∂t φ′(x) , (36)

and the completeness condition

i

∫
d3p f ∗~p (t, ~x)

↔
∂t f~p(t, ~x

′) = e−3ωtδ3(~x− ~x′) . (37)

The massive charged vector field

This field obeys the Proca-type equation

∂tc(∂iAi)−∆A0 +
µ2

t2
c

A0 = 0 , (38)

∂2
tc
Ak −∆Ak − ∂k(∂c

tA0) + ∂k(∂iAi) +
µ2

t2
c

Ak = 0 , (39)
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where µ = m/ω, while the Lorentz condition reads

∂iAi = ∂tcA0 − 2

tc
A0 . (40)

The mode expansion in the momentum basis,

A = A(+) + A(−)

=

∫
d3p

∑

λ

{U[~p, λ]a(~p, λ) + U[~p, λ]∗b∗(~p, λ)} , (41)

involve fundamental solutions, U[~p, λ], which satisfy the Proca equation, the Lorenz
condition, the eigenvalue equations

P iU[~p, λ] = piU[~p, λ] , WU[~p, λ] = p λU[~p, λ] , (42)

and the orthonormalization relations

〈U[~p, λ]|U[~p′, λ′]〉 = δλλ′δ
3(~p− ~p′) . (43)

with respect to the relativistic scalar product

〈A|A′〉 = −ηµν 〈Aµ, A
′
ν〉 = −iηµν

∫
d3xA∗

µ(tc, ~x)
↔
∂tc A′

ν(tc, ~x) . (44)

19



These solutions are of the form

U[~p, λ]i(x) =

{
α(tc, p) ei(~np, λ) ei~p·~x for λ = ±1
β(tc, p) ei(~np, λ) ei~p·~x for λ = 0

(45)

and

U[~p, λ]0(x) =

{
0 for λ = ±1
γ(tc, p) ei~p·~x for λ = 0

(46)

where ~np = ~p/p and

α(tc, p) = N1e
−1

2πk(−tc)
1
2 H

(1)
ik (−ptc) , (47)

γ(tc, p) = N2e
−1

2πk(−tc)
3
2 H

(1)
ik (−ptc) , (48)

β(tc, p) = iN2e
−1

2πk

[
1

p

(
ik +

1

2

)
(−tc)

1
2H

(1)
ik (−ptc)

−(−t)
3
2H

(1)
ik+1(−ptc)

]
, (49)

with the notations k =
√

m2

ω2 − 1
4 and

N1 =

√
π

2

1

(2π)3/2
, N2 =

√
π

2

1

(2π)3/2

ωp

m
. (50)
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The polarization vectors ~e(~np, λ) of the helicity basis are longitudinal for λ = 0, i.e.
~e(~np, 0) = ~np, while for λ = ±1 they are transversal, ~p · ~e(~np,±1) = 0. They have
c-number components which satisfy

~e(~np, λ)∗ · ~e(~np, λ
′) = δλλ′ , (51)

~e(~np, λ)∗ ∧ ~e(~np, λ) = iλ~np , (52)∑

λ

ei(~np, λ)∗ ej(~np, λ) = δij . (53)

The massless limit makes sense only if we take β(t, p) = γ(t, p) = 0 which leads to
the Coulomb gauge of the Maxwell free field, A0 = 0 and ∂iAi = 0. [8]

The Maxwell field in Coulomb gauge
A0(x) = 0 ,

Ai(x) =

∫
d3k

∑

λ=±1

[
ei(~nk, λ)f~k(x)a(~k, λ) + [ei(~nk, λ)f~k(x)]∗a∗(~k, λ)

]
,(54)

is expanded in terms of fundamental solutions of the d’Alambert equation,

f~k(x) =
1

(2π)3/2

1√
2k

e−iktc+i~k·~x , (55)
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The massive Dirac field

The Dirac field ψ satisfies the free equation EDψ = mψ. In the Cartesian gauge with
the non-vanishing tetrad components

e0
0 = −ωtc , ei

j = −δi
j ωtc , ê0

0 = − 1

ωtc
, êi

j = −δi
j

1

ωtc
, (56)

the Dirac operator reads

ED = −iωtc
(
γ0∂tc + γi∂i

)
+

3iω

2
γ0

= iγ0∂t + ie−ωtγi∂i +
3iω

2
γ0 , (57)

and the relativistic scalar product is defined as

〈ψ, ψ′〉 =

∫

D

d3x e3ωtψ(x)γ0ψ′(x) . (58)

The mode expansion in momentum basis

ψ(t, ~x) = ψ(+)(t, ~x) + ψ(−)(t, ~x)

=

∫
d3p

∑
σ

[
U~p,σ(x)a(~p, σ) + V~p,σ(x)b†(~p, σ)

]
. (59)
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is written in terms of the fundamental spinors of positive and negative frequencies with
momentum ~p and helicity σ that read

U~p,σ(t, ~x) = iN

(
1
2 eπk/2H

(1)
ν− (qe−ωt) ξσ(~p)

σ e−πk/2H
(1)
ν+ (qe−ωt) ξσ(~p)

)
ei~p·~x−2ωt (60)

V~p,σ(t, ~x) = iN

(
−σ e−πk/2H

(2)
ν− (qe−ωt) ησ(~p)

1
2 eπk/2H

(2)
ν+ (qe−ωt) ησ(~p)

)
e−i~p·~x−2ωt , (61)

where q = p/ω and N = 1
(2π)3/2

√
πq.

The Pauli spinors ξσ(~p) and ησ(~p) = iσ2[ξσ(~p)]∗ of helicity σ = ±1/2 satisfy

~σ · ~p ξσ(~p) = 2pσ ξσ(~p) , ~σ · ~p ησ(~p) = −2pσ ησ(~p) . (62)

Thus we obtain fundamental spinors which have the properties

P i U~p,σ = pi U~p,σ , P i V~p,σ = −pi V~p,σ , (63)
W U~p,σ = pσU~p,σ , W V~p,σ = −pσV~p,σ . (64)
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Moreover, these spinors are charge-conjugated to each other,

V~p,σ = (U~p,σ)
c = C(U ~p,σ)

T , C = iγ2γ0 , (65)

satisfy the ortonormalization relations

〈U~p,σ, U~p ′,σ′〉 = 〈V~p,σ, V~p ′,σ′〉 = δσσ′δ
3(~p− ~p ′) , (66)

〈U~p,σ, V~p ′,σ′〉 = 〈V~p,σ, U~p ′,σ′〉 = 0 , (67)

and represent a complete system of solutions,∫
d3p

∑
σ

[
U~p,σ(t, ~x)U+

~p,σ(t, ~x
′) + V~p,σ(t, ~x)V +

~p,σ(t, ~x
′)
]

= e−3ωtδ3(~x− ~x ′) .

(68)
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The massless Dirac field

In the case of m = 0 the fundamental solutions of the left-handed massless Dirac field
read

U 0
~p,σ(tc, ~x) = lim

k→0

1− γ5

2
U~p,σ(tc, ~x)

=

(−ωtc
2π

)3/2 (
(1
2 − σ)ξσ(~p)

0

)
e−iptc+i~p·~x (69)

V 0
~p,σ(tc, ~x) = lim

k→0

1− γ5

2
V~p,σ(tc, ~x)

=

(−ωtc
2π

)3/2 (
(1
2 + σ)ησ(~p)

0

)
eiptc−i~p·~x , (70)

are non-vanishing only for positive frequency and σ = −1/2 or negative frequency and
σ = 1/2, as in Minkowski spacetime. Obviously, these solutions have similar properties
as (65)-(64).
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Canonical quantization

The particle (a, a†) and antiparticle (b, b†) operators fulfill the standard anticommutation
relations in the momentum representation,

{a(~p, σ), a†(~p ′, σ′)} = {b(~p, σ), b†(~p ′, σ′)} = δσσ′δ
3(~p− ~p ′) , (71)

since then the equal-time anticommutator takes the canonical form

{ψ(t, ~x), ψ(t, ~x ′)} = e−3ωtγ0δ3(~x− ~x ′) . (72)

In general, the propagators are constructed using the partial anticommutator functions,

S̃(±)(t, t′, ~x− ~x ′) = i{ψ(±)(t, ~x), ψ
(±)

(t′, ~x ′)} , (73)

or the total one S̃ = S̃(+) + S̃(−). For example, the Feynman propagator,

S̃F (t, t′, ~x− ~x ′) = i 〈0|T [ψ(x)ψ(x′)] |0〉 (74)

= θ(t− t′)S̃(+)(t, t′, ~x− ~x ′)− θ(t′ − t)S̃(−)(t, t′, ~x− ~x ′) , (75)

is the causal Green function which obeys

[ED(x)−m]S̃F (t, t′, ~x− ~x ′) = −e−3ωtδ4(x− x′) . (76)
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The set of commuting operators of the momentum basis

The one-particle operators which are diagonal in the momentum basis are the
momentum

Pi =:
〈
ψ, P iψ

〉
:=

∫
d3p pi

∑
σ

[
a†(~p, σ)a(~p, σ) + b†(~p, σ)b(~p, σ)

]
, (77)

the helicity (or Pauli-Lubanski) operator,

W =: 〈ψ,Wψ〉 :=

∫
d3p

∑
σ

pσ
[
a†(~p, σ)a(~p, σ) + b†(~p, σ)b(~p, σ)

]
, (78)

and the charge operator

Q = : 〈ψ, ψ〉 : =

∫
d3p

∑
σ

[
a†(~p, σ)a(~p, σ)− b†(~p, σ)b(~p, σ)

]
. (79)

Thus the momentum basis of the Fock space is formed by the common eigenvectors of
the set {Q,Pi,W}.
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The Hamiltonian operator

The Hamiltonian operator H =: 〈ψ, Hψ〉 : is conserved but is not diagonal in this
basis since it does not commute with Pi and W. Its form in momentum representation
can be calculated using the identity

H U~p,σ(t, ~x) = −iω

(
pi∂pi +

3

2

)
U~p,σ(t, ~x) , (80)

and the similar one for V~p,σ, leading to

H =
iω

2

∫
d3p pi

∑
σ

[
a†(~p, σ)

↔
∂ pi a(~p, σ) + b†(~p, σ)

↔
∂ pi b(~p, σ)

]
(81)

where the derivatives act as f
↔
∂ h = f∂h− (∂f )h.

These new properties are universal , since similar formulas hold for the
scalar and vector fields.
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Concluding remarks

1. The energy operator is well-defined wherever measurements can be
done.

2. The quantum modes are globally defined by complete systems of
commuting operators on the whole observer’s domain.

3. The charge conjugation is point-independent and, therefore, the vacuum
is stable.

4. Consequently, the modes created by the same c.s.c.o. in different
charts can be related among themselves through combined transformations
without to mix the particle and antiparticle subspaces.
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