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Vacuum Decay as Tunnelling

Scalar Field Theory: QED: Schwinger pair productio
Fv(q,) vacuum bubble formation

False vacuum decay
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QED Reminder: Spontaneous Schwinger

f The imaginary part of the effective Euler—Heisenberg—Schwinger T
Lagrangian describes probability w of eTe™ pair production from vacuum

2T I / ds im2s el 1
p— m e ~ 1M —€ - _— — ~Y
v 17 s2 sinh(eF's) s

1 7Tm2n
—_p T eE
~ Z 2 €
n=0

[Euler,Heisenberg 1935; Schwinger 1951]
This expression already has the following characteristic features:

® Non-perturbative behaviour in £

® Finite imaginary part is extracted directly from the Schwinger
proper-time integral

® Semiclassical interpretation is easy: in the above sum, n can be
thought of as world-line instanton topological number.

These properties will manifest themselves in a more complicated fashion in what

we do below for induced Schwinger phenomena.
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Spontaneousvs. Induced

Scalar Field: destruction

Forbidden process
of metastable vacuum
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The similarity is not literal as in the previous case
but still the physics is essentially close J
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Monopole
p a
Tunnellin itati 1
-HH0eing- - - xcitation electron Dyon 3
True vgcuum
; )
VR) Thin wall approximation: -
tunnelling with finite energy
Monopole =h
]|
|

f Deforrmed potentiaJ

September. 2007 — p.



String Theory Motivation

World-sheets of electrically and magnetically charged (p, g)-strings may form a vertex shown

below

A7y (p,q)- string

(pvq)' String (p,Q)' String

w p3-bran®

String junction

String junction
becomes a loop
in an external field

Monopole in an SU(2) theory can be thought as an D-string stretched between two
D3-branes. String theory provides us with a junction, which can account for the decay of

BPS states in low-energy theory. The junction allows for a loop when an external field is on.

o -
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String Theory, Thin Wall Approximation and Electrodynamics

More generally, the action of a compact p-brane configuration is given by a sum of area term
and volume term
S = Sarea + Svolume — T/ _Q o

area volume

where T' is p-brane tension, GG, is the metric, induced by brane embedding into
target-space, Q — brane charge, & — flux density of the external (p + 2)-form field [Gorsky
2001].

This formula is a natural generalization of electrodynamics 1-particle action

S = Sarea + Svolume = /mds + e/ Apdxt

On the other hand, this is the action for a false vacuum bubble in thin wall approximation
[Voloshin 1985] in 1+1 dimensions

1

S = Sarea + Svolume = /(,LL\/,OQ + p2 - 56,02)

where p is the action density per unit of bubble boundary, € is the parameter, proportional to

energy difference between the two vacua.
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Semiclassical Approximation to Vacuum Decay: some References

Some History - 1

® [pPopov 1972] “Pair production in a variable and uniform field ... Imaginary time
formalism introduced.

® [stone 1976], “Semiclassical Methods For Unstable States”. Scalar field vacuum decay
treated semiclassically.

O [Affleck, De Luccia 1979], “Induced Vacuum Decay”. Semiclassical treatment expanded to
induced processes.

P [Agaev et. al. 1984] “Quasiclassical Description Of The Vacuum Instability In An External
Nonabelian Gauge Field”. 1-particle formalism applied to spontaneous Schwinger
processes.

® [G.V. Dunneand C. Schubert, 2005] “Worldline instantons and pair production in
inhomogeneous fields”. One-particle method systematically developed for both leading
exponential and the pre-exponential factor.

o -
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Semiclassical Approach to Monopole Decay

Some History - 2

Monopoles are perturbatively stable. However, in an unstable vacuum background they may
catalyze vacuum decay, which is interpreted as decay of BPS state itself. This instability may
be caused by deforming the potential or by an introduction of an external field.

® [steinhardt 1981] “Monopole And Vortex Dissociation And Decay Of The False Vacuum.”
Monopole in the context of scalar field deformed vacuum.

® [Gorsky 2001] “Schwinger type processes via branes and their gravity duals.” BPS decay
in an external field suggested form semiclassical string paradigm.

® [Dymarsky, Melnikov 2003] “Comments on BPS bound state decay.” Marginal stability
curve for “monopole + fermion” bound state studied quasiclassically.

® [Monin 2005] “Monopole decay in the external electric field.” Leading exponential factor
calculated semiclassically.

o -
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emiclassical approximation:

Semiclassical Path Integral

# Find closed-loop trajectories in Euclidean time

® Calculate fluctuation determinants

M Full 1-loop Green function of a monopole is obtained by
summing over all the insertions of electron-dyon loop into

monopole’s Euclidean trajectory.

X3

G(T,0) = GO(T,0) + GI(T,0) + GA(T,0) + - --

-
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Worldline I nstantons

- .

First correction to (scalar) Green function

GW(T,0) = /Dye_Mmf\/ydeDxDze_S[x’z’A]

T T

M M One-loop Euclidean configuration with
Electron and dyon can go round the multiply winding trajectories (“world-
loop multiply, winding over it with some T "~ line instantons”). Dashed bold arcs

AN
e D |h respective winding numbers m, n. e/ D‘\correspond to extra winding paths, ar-

1

& }/rows indicate winding direction.
M -
M

Propagator correction becomes after resummation over winding number m, n

0
(1) S Ko 5
Gresummed(x’ Z) ~ Km,ne l
m,n

-
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Negative M ode

Dilatation of the electron-dyon loop

Fluctuation determinants yield
us the first corrections to
semiclassical exponential de-
cay factors. The special fluc-
tuation, corresponding to the
overall dilatation of the loop,
possesses a negative eigenval-
ue. This negative eigenmode
IS the source of the imaginary
part of the mass correction.

-
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Exponential and Preexponential
f The first correction due to electron-dyon loop is T

G(l) (T, O) _ /DyeMmf\/y_szDCCDZQS[CC’Z’A],

S|z, z, A] — action for the particles in the external field A ,,, z and z electron and dyon coordinates
Sz, z, A] = m/ Vi2du + z’e/ A (2)ddu + Md/v,éQd'U — z'e/ AT () zdv
Semiclassically,

G (T, 0) = / 249G (2, 5)GO (y + Ay, z)Ke= St

where S.; is the classical action of dyon and electron; K contains contributions from the
Jacobian and from non-zero modes.
On the other hand, §G(z, 2) = —ém? [ d*yG®) (z,y)GO) (y + Ay, 2), thus

om? = Ke >

o -

September. 2007 — D. ]



Exponential factor
-

Notations: u1, u2, m masses of electron, dyon and monopole respectively.
The equations of motion are

daju

du\/_

We consider E = (0,0, E), hence Euclidean trajectories of the sub-barrier particles (electron

and dyon) are just the arcs of circle of angular size 61, 62

0; = cos™ ! i
1 2mpq

2 2 2

_ —1 m~—py+tps
05 = cos ST

The leading semiclassical exponential term in I' becomes

2 meMd
91—|— 92— oF Sln((91—|—(92)
'~ e

Unfortunately, the prefactor is not easily recovered within this method
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Second Quantized Calculation

Advantage of second-quantized approach — 1-loop preexponential obtained at the same price

Fermionic Green function of a dyon in the constant external field:

1 el E o2 9B@—a)]
ds g tm” s+t 4tan(gEs) +1 4tanh(eES) (.CU X )|| X

1672 sinh(eFE's) sin(gFE's) ‘

G(x,2') =

> e—z%eE(xo—i—:cg)(xg—:cg)—i%gE(:cl +x))(z2—x5)ticgse E+ioc1agE >

_ 9Bvi(@—al), _ eBy(z—a')
X {m 2tan(gE's) 2tanh(eFE's) +

3 1 2
+ 5= (w3 — ap) — L5 (wo — 2p) + 47 (22 — a) — TEE (2 —56’1)}

|| denotes directions 0,3, L directions 1, 2, electric field is constant and directed along axis 3,
summation over respectively repeating || and L is supposed.

o -
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L oop Correction

A correction to the Green function due to the electron-dyon loop is
0G(t,0) = / G (t, x)tr G(a:,y)SEExt)G(y (Ex )} G (z,0)dxdy,

indices M, E/, D denoting monopole, electron and dyon correspondingly. After calculating
the trace, the correction to monopole Green function becomes

doy dasdas dog dz dwe™ (BHSI+5L1)

5Gm(T, O) = ﬁ)\2693E4/

a1 sin aq sin ag sinh(Zag2) as ay sinh(Zay) sinh(Zags)

eE\? cosh(Zag egE? cos(a] —
( meMdcosh(gozg)cos(ozl —a2)+ | — (w—z)ﬁ . (e_ ) + (w—2)% (1 2)>
e 2 sin 1 sin oo 4 smh( a2)
where
m2 M2 2
B = £ R+ m(Oz3+Oz4)
S| = eE ﬁ—|— ek — w)” + ef (w — )H(cot a1 + cot ag)
S, = %zL coth(Zay) + %“ﬂ coth(Z£a3) + & ey (W Z)L + £ (w—z Lcoth (Lag)—
—i%(wlzg — woz1).
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L oop Correction

-

Integrating out z and w and introducing Feynman variables
az = Az, ay = A(1 — x) one gets

eFE a1+ el a2+ eE A+A+sina1 sin ¢

[m2 M2 A2 eB 12
€

sin(o] + g

5G(T)

A2 g? / da1 dos AdA

e a1 sinay sinagp sinh(£ay)

: € gas gA 1 gA .
{(— + g cot =) sinh =— + g cosh —} |A(cot ay + cot az) + 1]
a e e e

h(g ) cos( ) 4B cosh(Zap)A
X elu o T . .
Mte i €05 eaQ cos\on T o) e sin vy sin ag[A(cot ap + cot ap) -

(6ET)2 cosh(Za) N
2 sin a; sin aa[A(cot o + cot ag) + 1]2
cos(a; — ) sinh(£A) }

a sinh(£as) | (£ + gcot 222 ) sinh &4 + g cosh 4)

+ egl

LFurther we shall have to evaluate this via saddle-point method. J
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Saddle-Point Integral 1

2
The function to be minimized v f(A) = — My |44 (eB) T2 L satisfies the
eFE AM?2 A-+const

m

condition of saddle-point method applicability. Thus

. . 3
eET sin a1 sin a9 . . . 82f 4 M
A0 = 535, ~ Sn(aitag) andthe second derivative is 775 = BT

Euclidean propagator of a scalar particle in an external field is
and the leading-order contribution to its variation

5Gm (T, 0) = L say, gy L
T 8y /2r3/2 md M sin QQET.

Comparing the two expressions for §G(T',0) one gets

_(m_ga1+M3a2_M72n si‘nal sina2>
1 \2g day doge \ °° v b sin(oytaz)
ImoM,, = —
27\/2m3/2 M J a; sinh(£ay) sin(aq + 042)(0%1 + gcot(Zan) + g
X [meMd cosh (@) cos(a; — o) + M7 cosh (gozg) S.mzal P ] :
€ e / sin“(ag + as)
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Saddle-Point Integral 2

f Custom integration via methods of the theory of complex variable T
functions fails, due to an essential non-analyticity of the integrand in
a1, as, like e/ in the vicinity of x = 0. One employs 2-dimensional
saddle-point method for [ da;das. Minimizing

m? M2 M?, sin oy sin as
f(al ,OéQ) GE o — D Sin(a1+a2) one getS

2 2 2

&f(n) COS ST 2mn +0, 4 27n
+(m) - 1 M2 —;lQrM2 + =
05 cos™ " —Hgr 2mm +0, £ 2mm
n, m € 7, Hi(”) > 0, the corresponding determinant being

aZf Sin2 (91 Sin2 92 MS@ 2 (memd)2
det ij = —4— A = —4 .
(9047;(9043' Sin ((91 -+ (92) ek (eE)Q

o -
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addle-Point Integral: Contour Defor matic

-

complex variable s € C
Rf[S]

Minkowskian l
integration
contour

Integration over o4, as contained a complicated contour rotation in C2.
Below we show a simplified picture of how it should be done for one

s

Deformed (Euclidean)
integration
contour

Saddle point

Essential

singularity

— % ; \\]—> Im[s]

B

Here singularities do not lie on integration path; and saddle-points are passed in

the (imaginary) direction prescribed by steepest descent condition. The

deformation was performed in the domain of analyticity of the integrand, without

traversing the singularities.

-
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o

Sum Over Winding Numbers

Finally one obtains the mass correction as a sum over winding numbers m,n

— ST 01—0>
SR T Fhn cos(figt
8t My, b0 sin (61 + 6’2)(9 S T gcot(£(02 + 2mm)) + g

g
* (61 + 27n) tanh(2(05 + 27m))

_S_’

B e”"mm cost(H52) <
Z sin(61 + 62) ( +gcot(£(2mm — 02)) + g)

n=1,m=1 27rn 01

2/601—05

g
h
27n — 1) tanh (L (2mm — 05)) } IR
St = e (0 + 2mn) + U (0, + 27m) — 2eMa sin(g; + 0y),

@[\3/_\

n,m
2
Snm = =55 (2mn — 01) + f—E(me — 03) + ™=Md gin(6y + 02).The leading term:
2 2(01=02
Im 6 M A b s cos (75 ) J with So

_ e :
4\/571‘ Mm, Sin(91 + 92)(% -+ gCOt(%QQ) -+ g) 01 tanh(%eg)

2 M? me M
So = Me 01 + —dQQ — ° d Sin(91 + 92).
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Why semiclassical?

The leading exponential term in 6 M in the previous slide was obtained via approximating the
Schwinger proper-time integrals by saddle-point approximation. What is the physical
meaning of it?
In fact, when we got
mg M2 meMd

So = 0, + 249, —
=BT E

Sin(91 + 92).

we have recovered the classical action

S. = consty - Length — consts - Area

typical both for induced Schwinger processes in the first-quantized approach and for the 2D
vacuum decay phenomena.

Terms proportional to 61, 02 ~ world-line length.
Terms proportional to sin(0; + 62) ~ area between world-lines.
In general, our result amounts to an explicit verification of a general statement on classical
action in ST and Green functions in FT

Y~
€ string theory |classical ~ 2field theory|semiclassical
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Thirring Model vs Sine-Gor don

For an induced Schwinger process in Thirring model there exists a calculation of the sub-leading fac
by Gorsky and Voloshin, based on vacuum decay in the dual theory (Sine-Gordon Model)

dgp

—-S

I' = —e 77,
1

here g Thirring coupling constant, g > 1; u mass of Thirring fermions, S classical action.

sine-Gordon Thirring

¢ !

|

Kink zero mode (I; s

K, K are kink-antikink pair in sine-Gordon model. LHS figure depicts a vacuum bubble with “legs” corresponding to ir

¢ particle, RHS — Schwinger decay of a meson 7.
First bound state 7« of massive Thirring model is a pseudocsalar, because the fermionic

current j# = 1y in Thirring model corresponds to a pseudovector quantity e“* 8, ¢ in
sine-Gordon model.
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2D calculation

The suggested treatment of monopoles in 4D corresponds to the decay of bound state into a

pair of a fermion and an antifermion of masses w1, p2 in 2D. It yields after resummation,
which is done exactly

_
Im 5m o 4m 27'('/,L1 27r,u X
( ) (1 e eE ) sin(61+62)

S+ 01—02 el 1 o
X { [2 COS ( ) e Sm<91+92)}
0

=Sy 2 (01— el 1
e 0 [2 COS ( ) + e Sin(91+92)} } , and

2 2 2
—1 M~ +pu]— 5

01 = cos S
2 2 2
92 - COS_l m~ — i+ u5
2mpo

Gt — ul 10, + “2 20y — L2 sin(01 + 02),

L ST = %(27’(’-91) -+ 5_12?( 7T—92) -+ ’u;—gQSiIl(el —|-92) J
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acuum Decay In SG=Schwinger in Thirrii

- .

In Thirring model, the above calculations for decay of bound state with
mass m into two fermions with equal masses . lead us to

_ A2 e~ %0 el 1 _ -1 m
m om = ~ 4m sin 26 ( p? sin 29) ’Where 0 = cos 21
(resummation factor 1% = omitted here). Let the external meson be the lightest

(1—e eE )2

2
bound state, then m = % < . Comparison of Schwinger and vacuum decay yields

T
g

This suggests a 2 1/,/g being
small, \ effectively has a meaning of coupling constant in induced Schwinger process

for the lightest Thirring meson.

o -
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Finite Temperature: General Features

- .

Several simple features are characteristic for theories at finite
temperatures

® Green functions become periodic in Euclidean time, continuous

momenta p, substituted for discrete Matsubara frequencies 2777”

® An additional gauge-invariant quantity e ¢ 4x4%* (holonomy)
characterizes the observables.

® The class of gauge transformations admitted by the theory is
restricted to periodic functions in Euclidean time. However, no
periodicity condition is imposed upon A, (z)

Thus one can treat finite-temperature filed theory as a theory on a
\_RS x S1, with the restrictions above imposed. J
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Finite-Temperature Green Functions

We are going to consider again Thirring meson in 2 dimensions. Decay rate into a
fermion-antifermion pair in an external field is calculated. This process has all
characteristic properties of what happens to monopoles in 4D.

The Euclidean Green function for a charged particle in an external field E = (0, E) is

expressed in terms of the following sum:

elds
Z x
sinh(eFE's)
—z(:vo Yo — pB) eFE coth(eEs) _i(acl—yl)zeE coth(eEs)

X € 4 4 X

« o 3€E(x3—y3)(zo+yo+pH)

The imaginary part of meson mass is calculated in the same formalism as above.

o -
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hermal Correctionsto Schwinger Process

We give an exact expression for the decay rate I' It can be expressed in terms of a series in
Matsubara frequencies:

d(]fldOéQ

A231e3/2
dmn/T / \/sinh(oq + ag) cosh(ag — aa)

I —

X

a72; (rtanh(aq)—s tanh(a2))2 sinh(2a7) sinh(2ag)
X g 5k—|—7"—|—86 el 4 sinh(aq+a9) cosh(a]—a9) X

r,sE/

2 2

" ei [7“2 tanh(oél)+32 tanh(a2)+Z—E (1+az)— ?E coth(aq) ;

+coth(ao)

where after doing summation one makes an analytic extension to continuous values of k£

™m

and imposes k = Q—f The a1, a2 integrals are to be estimated by the saddle-point method.

o -
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“Duality”

Doing calculations with Matsubara sums, one makes extensive use of the well-known
Poisson formula

Y fm)y= > [f(2m)

n=—oo n—=——oo

where f(k) = [°°_ f(t)e **tdL.

Therefore, either for 3 — 0 or for 5 — oo the leading term is the one with zero Matsubara
frequency, and the sub-leading term (the first Matsubara frequency) is exponentially
suppressed (like ~ e_ﬁ or ~ e— BB respectively). More accurately, this “duality”

manifests itself via the possibility to use the two equivalent series:

. 2 m? n2 A 2
F ~U l E /d&ld&Qez{g_E(al—i_aQ)_eE Coth(al)icoth(a2)+iEﬁ2 (S_SO) } —
b4

eEﬁQs2

. 2 2 |
— E /dOéldOCZQZ[g_E(al—i_aQ)_ eE cot h(aq)+coth(asg) - 1A —27'('880}
S

dependent on the particular asymptotics. Here A = i;ﬁggizz% ,
1
tanh(az)(coth(a)+coth(az))’

sg = —k after the analytic continuation £ = Z‘—f
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Saddle Point vs. Matsubara Sum

The integrand series in the Schwinger proper-time integrals has two equivalent
representations

(1) ~ ells_E(Oél‘l‘OﬂQ)_ eE coth(ozl)—:l[—coth(ozg) +§Eﬁé (8_80)2]
. 2 m2 eFE 252
(2) -~ eil‘(;L—E(Of1+042)— eE cot h(al)}l—coth(oQ) o 46,4 _278801
(Summation over s omitted above.)
“Duality” property summarized below:
B2eE — 0 B2eE — oo
2 2 2 2 2
M _m 1 4T A 2 uo m 1
L.O. E(al + a2) eE coth(ai)+coth(as) + eE 32 (SO) eE (041 + 042) eE coth(aq)4cc
2 2
NLO. 4z-4 LB~ 2msg

o -
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L ow-Temperature L imit

In the low-temperature limit for equal-mass fermions the zero-temperature result is
reconstructed in the leading order,

2 2 2
u- = 1
— >\ el 1 _QEQ_*_ ZLE 2 cot(@)

T _
L.O. ™ 8rm sin(2a) ‘

where evaluating the saddle-point integrals is done at the same values a = i« as before

coso = —.

o -
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High-Temperature Limit

=

Leading-order term prefactor is proportional to the temperature in the
asypmtotic regime 3%¢ — 0, u > m

2
FL 0. & l A 1 6_5_225+ ZLE2 oot )
"~ B VeE \/sin(2a)

Saddle-point value is different for this limit, namely

_ M
a~ —

m

However, high-temperature regime requires more physical understanding:
one should take care of distinguishing the competing purely
guantum-mechanical tunnelling transitions, suppressed as e—STE, and
thermal (over-barrier) processes, suppressed as e~ #¥. Therefore, we do

not give next-to-leading order corrections here.
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Main Results

- .

® Monopole width up to the subleading semiclassical factor:

A2 eE o0 (:052(—91592 ) q

ImdoM,, ~ —
421 My, sin(60y + 92)(% + gcot(£26;) + g) 01 tanh(20

® Effective “fermion—meson” vertex for Schwinger process in

Thirring model:
A= ,u\/f.
9

#® Finite-temperature corrections for meson decay width in an
external field are calculated.

o -
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