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Abstract

Within the framework of generalized Papapetrou method, we derive the effective equations

of motion for a string with two particles attached to its ends, along with appropriate boundary

conditions. The equations of motion are the usual Nambu-Goto-like equations, while boundary

conditions turn out to be equations of motion for the particles at the string ends. The form of

those equations is discussed, and they are explicitly solved for a particular case of a straight-

line string rotating around its center. From this solution we obtain the correction terms to the

J ∝ E
2 law describing Regge trajectories, due to nonzero angular momenta of the particles.

1 Introduction

The interest in studying extended objects in high energy physics began with the observation
that meson resonances could be viewed as rotating relativistic strings [1, 2]. This model provided a
successful explanation of Regge trajectories. Nevertheless, the model assumes that the two quarks
attached to the string have zero mass and zero angular momentum. The purpose of this paper is
to take into account small mass and small angular momentum of the two particles, thereby giving
a correction term in J ∝ E2 law describing Regge trajectories.

In order to do so, one needs to derive the equations of motion for the string with particles
attached to its ends. The general method that lends itself for doing this was developed in [5, 6],
and represents the generalization of the Mathisson-Papapetrou method [3, 4] to include extended
objects.

Our conventions are the same as in [6]. Greek indices µ, ν, . . . are the spacetime indices, and
run over 0, 1, . . . , D − 1. Latin indices a, b, . . . are the world sheet indices and run over 0, 1, . . . , p.
The Latin indices i, j, . . . refer to the world sheet boundary and take values 0, 1, . . . , p − 1. The
coordinates of spacetime, world sheet and world sheet boundary are denoted by xµ, ξa and λi,
respectively. The corresponding metric tensors are denoted by gµν(x), γab(ξ) and hij(λ). The
signature convention is defined by diag(−, +, . . . , +), and the indices are raised by the inverse
metrics gµν , γab and hij .

2 Equations of motion

The basic starting point of the analysis is the covariant conservation of the symmetric stress-
energy tensor

∇νT µν = 0 .

The stress-energy tensor is written as a sum of two terms,

T µν = T µν
s + T µν

p ,
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where

T µν
s =

∫

M

d2ξ
√
−γBµν

s

δ(4)(x − z)√−g
,

T µν
p =

∫

∂M

dλ
√
−h

(

Bµν
p

δ(4)(x − z)√−g
−∇ρB

µνρ
p

δ(4)(x − z)√−g

)

.

The string part of the stress-energy tensor is written in the single-pole approximation, in accordance
with the assumed absence of spin in the string interior. The procedure described in [6] then yields
the familiar world sheet equations

∇a

(

mabuµ
b

)

= 0 . (1)

The particle part T µν
p is constrained by the requirement that particle trajectories coincide with

the string boundary. The resulting boundary conditions are interpreted as the particle equations
of motion:

p⊥

µ
λ p⊥

ν
ρ

DSλρ

ds
= 0 , (2)

D

ds
(mvµ) =

D

ds

(

2vν

DSµν

ds

)

+ vνSλρRµ
νλρ + namabuµ

b . (3)

Here, p⊥

µ
ν ≡ δµ

ν + vµvν is the orthogonal projector to the string boundary. The latter boundary
condition represents the equation determining particle trajectory, and has three terms on the right-
hand side, representing forces that act on the particle. The first term is the spin-orbit interaction
term which represents the interaction of the rotation of the string with the spin of the particle.
The second term is the familiar Papapetrou term representing deviation from a geodesic line for a
spinning particle, and is the consequence of the interaction of particle angular momentum with the
background gravitational field. The third term represents the force that the string exerts on the
particle. As the boundary ∂M consists of two disjoint lines, the mass and spin of the two particles
may differ.

In what follows, we shall assume that the string is made of the Nambu-Goto type of matter,
moving in a 4-dimensional flat spacetime:

mab = Tγab , Rµ
νλρ = 0 .

Then, the world sheet equations (1) reduce to the familiar Nambu-Goto equations, and the third
term on the right-hand side of (3) becomes Tnµ. As for the particles, we shall impose the constraint

Sµνvν = 0 ,

which rules out the boost degrees of freedom. Physically, this condition constrains the particle
centre of mass to coincide with the string end. After this, we are left with

~S ≡ ελρµ0Sλρ~eµ

as the only independent components of Sµν .
Now, we look for a simple, straight line solution of the equations of motion (1). Without loss

of generality, we put
~z = ~α(τ)σ , z0 = τ ,

where ξ0 ≡ τ and ξ1 ≡ σ take values in the intervals (−∞,∞) and [−1, 1], respectively. Assuming
that the string length L = 2|~α|, and the velocity of the string ends V = |d~α/dτ | are constant, the
equation (1) reduces to

d2

dτ2
~α + ω2~α = 0 , ω ≡ 2V

L
.
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It describes uniform rotation in a plane. Choosing the rotation plane to be the x− y plane, we get
the solution

~α =
L

2
(cosωτ ~ex + sin ωτ ~ey) .

Next we consider the boundary equations (2) and (3). Omitting the details of the calculation,
we find that the particle intrinsic angular momentum satisfies

d~S

dτ
= 0 , ~S = S~ez ,

while its velocity becomes

V =
1

√

1 + 2µ
TL

, µ ≡ m +

√

2T

mL
S . (4)

Each of the two particles has its own mass and intrinsic angular momentum, denoted by m± and
S± for the particle at σ = ±1. As both particles have the same velocity, their masses are related
by µ+ = µ−. We see that the particle masses m± may differ, in spite of the fact that the center of
mass of the string-particle system is at σ = 0. This is a consequence of the nontrivial spin-orbit
interaction that contributes to the total energy.

By inspecting the expression (4), we see that V < 1, as it should be. In the limit µ → 0, the
string ends move with the speed of light, representing the Nambu-Goto dynamics with Neumann
boundary conditions. When µ → ∞, the string ends do not move. This is an example of Dirichlet
boundary conditions.

3 Regge trajectories law

The total angular momentum and energy of the considered system are calculated using the
usual definitions:

E =

∫

d3x T 00, Jµν =

∫

d3x x[µT ν]0.

One finds

E = TL
arcsinV

V
+

2µ√
1 − V 2

− 2V

L
(S+ + S−) ,

J =
TL2

4

(

arcsinV

V 2
−

√
1 − V 2

V

)

+
2µ√

1 − V 2

LV

2
+ S+ + S− .

These equations have obvious interpretation. The total energy of the system consists of the string
energy, kinetic energy of the two particles, and the spin-orbit interaction energy. The particle
intrinsic rotational energy, being quadratic in ~S, is neglected in the pole-dipole approximation.
The total angular momentum includes the orbital angular momentum of the string and the two
particles, and the particle spins.

In the limit of small particle masses, the free parameter L can be eliminated in favour of E,
which leads to

J =
1

2πT
E2 + 2 (S+ + S−) . (5)

The first term on the right-hand side defines the known Regge trajectory, while the second repre-
sents a small correction due to the presence of spinning particles at the string ends. As we can see,
the unique Regge trajectory of the ordinary string theory splits into a family of distinctive trajec-
tories. It is interesting that the nonzero (but small) masses of the two particles do not contribute
explicitly in the equation. They are present through the total energy E of the system, but they
do not bring any correction to the usual J ∝ E2 Regge law. In contrast, the spins of the particles,
while also present implicitly through total angular momentum J , do give an explicit correction to
the law, in the form of the second term on the right-hand side of (5).
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4 Concluding remarks

In this paper we have analyzed the system consisting of a string with two particles attached to
its ends. The method we use is a generalization of the Mathisson-Papapetrou method for pointlike
matter [3, 4]. It has already been used in [5, 6] for the derivation of equations of motion of extended
objects. Using those results, we have derived the equations of motion for the string along with
the appropriate boundary conditions. These boundary conditions turn out to be the equations of
motion for the two particles attached to the string ends.

These equations of motion display three forces acting on the particle. The first one is the
spin-orbit interaction between the spin of the particle and its orbital motion due to the presence
of the string. The second force represents geodesic deviation term due to the interaction of the
particle spin with the background curvature. The third force acting on the particle is the pull of
the string, since the particle is required to be on its end.

Next we specialized to the case of the usual Nambu-Goto string with two massive spinning
particles at its ends. The equations of motion can be solved exactly for the case of a straight line
string rotating around its center. It turns out that the velocity of the string ends is less than the
velocity of light, and is dependent on the masses and spins of the particles. In this way, one is
provided a way to describe both Neumann and Dirichlet boundary conditions for the Nambu-Goto
string as the limits where the masses of the two particles approach zero or infinity, respectively.

Finally, given this solution, one can calculate the total energy and angular momentum of the
system, and in the limit of small particle masses derive the relation connecting the total angular
momentum with the total energy and spins of the particles. This relation represents the law of
Regge trajectories, with a correction term due to the particle spins. In this setting, there is not
only one Regge trajectory, but a whole family, due to different spins of the constituent particles,
which is consistent with experimental observations.

This work was supported by the Serbian Science Foundation, Serbia.
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