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Basic of string theory

» Strings are objects with one spatial dimension.

» During motion string sweeps a two-dimensional surface called

world-sheet.

The world-sheet is parameterized by two parameters: one
time-like 7 and one space-like o, o € [0, 7].

Strings occur in two toplogies: closed, which do not have

endpoints, and open strings, where contribution of boundary
conditions is nontrivial.



Variational principle and boundary
conditions

» Let action S depends on the space-time coordinates
xt (uw=20,1,...,D) and their derivatives with respect to 7
and o, ©* and x'*, respectively. A variation yields

oL ™
0S = /deG(W — 87—77"“ — aa’ ;SO))éxu + /dT’Y;(,LO)(qu‘O
(1)

0) _ oc
where 7, = W and v, = 57

» The first term gives Euler-Lagrangian equations of motion,
while vanishing of the second term gives boundary conditions.

» The closed strings satisfy boundary conditions automtically,
while in the case of the open ones we have to examine their
contribution to the string dynamics.



Sorts of boundary conditions

» Arbitrary coordinate variations dx* at string endpoints gives
Neumann boundary conditions

0 ‘ (0)’ ) (2)
» Fixed coordinates at the string endpoints
&v“‘o = 5m“’ﬂ =0

gives Dirichlet boundary conditions.



Dp-branes

» Dp-branes are p + 1-dimensional objects with p spatial
dimensions which satisfy Dirichlet boundary conditions.
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Figure: Example of D5-brane

» In D-dimensional space-time for coordinates
2" (i=0,1,2,...,p) we choose Neumann boundary
conditions, and for the rest ones 2% (a =p+1,...,D)
Dirichlet boundary conditions, so that
Guw=0p=1i,v=a).



Definition of the model

Action

» Let us introduce the action which desribes the string dynamics
in the presence of metric G, (x), antisymmetric
Kalb-Ramond field B, (x) and dilaton field ®(x)

By | Oqxt0ga” + dR(Z )}
(4)

caB
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where {* = (7, 0) parameterizes the world-sheet ¥ with

metric gog. Symbol R® denotes scalar curvature
corresponding to the metric g,3.

5= [ dev=y {[ G+



Quantum world-sheet conformal
invariance and space-time field

equations
1
8%, = Ry — ZBMPUBVPJ +2Dya, =0, (5)
51/ =D,B’ —2a,B, =0, (6)
D — 26 1
B® =27k 5 R — ﬂB“pUBW’” — Dya" +4a*> =0, (7)

where R, D,, and R are Ricci tensor, covariant derivative and
scalar curvature with respect to the metric G,
Bpo = 0uByy + 0,Bp, + 0,8, is field strength for the field B,
and the vector a, = 0,,® is gradient of dilaton field.

» One particular solution of these equations is

Guv(z) = G = const, B, (z) = By, = const,  (8)
®(r) = ®g + aux”, (a, = const) . (9)



Quantum conformal invariance -
Lioville term
If ﬁfy =0 and ﬁfy =0 = ® = ¢, where c is a constant.

(C. G. Callan, D. Friedan, E. J. Martinec and M. J. Perry,
Nucl. Phys. B 262 (1985) 593)

For G\, = const, By, = const and ® = ®y + a,x" we have

D —

2
Be = 2nk 0 +4a* =c. (10)

The nonlinear sigma model (4) becomes conformal field
theory characterized by Virasoro algebra with central charge c.
The remaining anomaly can be cancelled by adding Liouville
term to the action (4)

g* / 2 @ 1 e 58
_— V—gR® A = ¢V
St 204 s d“&\/—gR R\, g 03,
(11)

where V,, is the covariant derivative with respect to gng.



Quantum conformal invariance - full
action

» Osillations in x® directions decouple from the rest. We use
conformal gauge, gag = €*'na3. Adding Liouville term, which
is quadratic in F, and changing variable
F—>*F=F+ %ai:pi, we cancel term linear in F'

S=r / d*¢ K;naﬂ *G,-j+ea53ij> 8amiang+2na68a*Fﬁg*F} :
” (12)
where
*Gii = Gy — aaia; (1—5¢ > (13)
" “ I a  (4wk)?
depends on the central charge c.

» The field *F decouples, and the rest part of the action has a
dilaton free form up to the change G;; — *G;, where *G;
can be singular for some choices of background fields.

» For 2' and *F we choose Neumann boundary conditions,
which will be treated as canonical constraints.



‘Case (1)-A=1—-ad®#0and A=1—aa>#0

Hamiltonian and currents

> From det*G;; = Adet Gy;, (det G;; # 0) follows that
redefined metric *G/;; is nonsingular. Because *F' decouples,
this case is equivalent to the dilaton free case.

» Canonical Hamiltonian is of the form

Hc = /dUHC, Hc:T_—T+’
1

a
T — 7[* 1\ij *
+ :F4H(G ) J+i ]:tj+4

where the currents are defined as

+(F) (P ](14)

Yjri =+ 26 Maga? , G =7 ;2 *F, (15)

and (*G~1H¥ = GV + =osa ol and *y,;j = B” + 1*G”
The canonical momenta are denoted by 7; and 7.



Boundary conditions
» Boundary conditions in terms of currents
oY = (LG oy + (TG0 "y, (16)

1. .
7O =2 [y — )] - (17)

» Examing the consistency of the constraints at ¢ = 0, using
Taylor expansion, we obtain

Lio) = (TG %5(0) + (TG Huy(o),
Do) = 3 [mtr(o) ~*um(~0)] (18)

» In the same way we obtain corresponding expressions at
o = m. The periodicity of canonical variables solves the
boundary conditions at o = 7w and we consider only (18).



Algebra of constraints

» Algebra of the constraints x4 = (I';,T") is

/ gl o

{XA(U)7XB(6)} = —IQMAB(S R MAB = 6] 4 )
(19)

where
*Gzejff — *GZ] o 4(B *G_IB)U ] (20)

» From 3
efy _ A eff

det *G¢// = T det G/ (21)

follows that all constraints x 4 are of the second class for
A #0.



Solution of constraints

» Solving I'; =0 and I" = 0, we get
7(0) = ¢'(0) — 2 "0 / dowpj(on), m=pi, (22)
0

*F=*f, m=p, (23)

. 1. . 1
¢'(0) =3 [#'(@) +2'(=0)] . pi(o) = 5 [milo) + m(=0)] ,
(24)
and similar for *f and p.
» Antisymmetric tensor *O% is

- 1 -
Qi = —;(*Ge_flfB Gy (25)



Noncommutativity
Poisson brackets are of the form
{2%(0),27(7)} = O A(c +7), (26)

{z'(0),"F(@)} =0, {*F(0),"F(@)} =0, (27)

where
-1 ifoe=0
Aloc)=< 0 if0<o<2m. (28)
1 ifo=2n

String endpoints move along Dp-brane, so it is a
noncommutative manifold.

Presence of momenta in the solution for 2° makes Poisson
brackets to be nonzero.

Solution for 2% as well as the noncommutativity parameter
depend on central charge c.



Effective theory

» Using the solution and the expression for canonical
Hamiltonian we obtain effective Hamiltonian

i, = /dch, =T Ty,

~ _ ~ ~ o~ ~

T, = :F@ {(*Geff) M i 7 T TeE) *Ji(F)](29)
where we introduced effective currents

~ ~ 4Kk
“jei=pi £ R *ijffq/] *.7:|:(F) =p= o “f (30)



Case (2) - A=0and A #0

For A = 0 metric *Gj; is singular and its determinant has one
zero.

From the expression for canonical momenta,

= H(*Gz‘j.fbj — ZBijx/j), and singularity of the metric *G;;
follows that the velocity z¢ = a;x’ can not be expressed in
terms of the momenta.

Current *j = a'*j; is a primary constraint.

Consistency procedure gives that current *j is a first class
constraint, and consequently, it generates gauge symmetry

X ={X,G}, G= /dan(a) *j(o). (31)
Gauge transformations
5nxi = a'n, 6, "F =0,
oymi = 2ka’Bjn’, d;m=0. (32)

Good gauge condition is 29 = a;z* = 0.
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Case (3)- A=0and A+#0

From Eq.(21) we have that det M4p for A = 0 has two zeros.

Singularity of matrix M 4p is directly connected with
singularity of the metric *Gf]ff.

Singular directions of *G;z]ff are @' and (aB)".

Consequently, two constraints originating from boundary
conditions turn into first class constraints

I =aT;, T9=2(aB)T;.

(33)

They generate local gauge symmetry and we fix the gauge

rg=0, z1=(aB)iz'=0.

(34)



Solution of the cases (2) and (3)

» Solutions have common form
o
oh,(7) = Q'le) = 276" [“dnPyen). 7" = P, (39)

l’o‘g:(), 71'0:0, ml\g:O, 7T1:0, (36)
F=*f, m=p, (37)

where string coordinates 27, , = (*Pp,)"ja’ are expressed in
terms of effective string variables

Q = ("Pp,) ¢, P=("Pp,)p;. (38)




Antisymmetric tensor and projector

» Antisymmetric tensor *©% is given by expression

* Q] 1 —1 % —1x% 17
0l = _E(Ge;f Pp, BG™"*Pp )7, (39)
where
; ; aiCNLj 4 _ .
(*PDP)] == (57j] - d2 - m(Ba)Z(CLB)] . (40)

projects on the subspace othogonal to the vectors @’ and
(aB)".



Noncommutativity and effective
theory

» Variable *F' decouples and it is a commutative variable, while
the Dp-brane coordinates X}DP satisfy algebra

{ah, (1,0),2], (1,5)} = *©TA(0 +7). (41)

» The number of Dp-brane dimensions decreases because xg
and x satisfy Dirichlet boundary conditions.

» Effective Hamiltonian has a form
Hc - T_ - T+ ,
1 —1 % R ~ a ~ ~
T = Fo- |Gy *Pp,)" *ji *j+j +7 *]i(F)*]i(F)] :
where

; . ~ 4K
“jri = Pi£ k("Pp,Gesy)ij@”,  “jar) = pi; “f.(42)
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Conclusions

Quantum conformal invariance is preserved even in the
presence of the conformal factor of the world-sheet metric.

For A = 0 metric *Gj; is singular producing one standard
Dirac constraint. In the case for A = 0 we have that effective
metric *ijff is singular and has two singular directions.
Because the algebra of the constraints originating from
boundary conditions closes on *Gf]ff, two first class
constraints appear.

First class constraints generate local gauge symmetries which
decrease the number of the Dp-brane dimensions.

Canonical variables, which describe string dynamics, and
noncommutativity parameter depend on the central charge c.

In the limit & — oo (¢ — 0) we obtain the results of the
Liouville free case (B. Nikoli¢ and B. Sazdovié, Phys. Rev. D
74 (2006) 045024).



