Single Particle Representation of Parabose Extension of Conformal Supersymmetry

Igor Salom

Institute of physics, Belgrade

Motivation

 There is no experimental data on (spacetime) supersymmetry, so how do we so surely know that it should be of the standard Poencare (conformal) type?

- We don't! (HLS presumptions are over constraining)

- Yet, why is 99.9% of supersymmetry work and of empirical predictions based on (Ndimensional) Poencare (conformal) susy?
 - Indeed, why???

Is this really necessary?

 $\{Q_{\alpha}, Q_{\beta}\} = 0$ $\{Q_{\alpha}, S_{\beta}\} = 0$ $\{S_{\alpha}, S_{\beta}\} = 0$ $\{Q_{\alpha}, Q_{\beta}\} = 0$ (=central) $\{Q_{\alpha}, S_{\beta}\} = 0$ (=central) $\{S_{\alpha}, S_{\beta}\} = 0$ (=central) generalized supersymmetry

We demonstrate:

- Two simple defining relations of parabose algebra are equivalent to dozens of generalized conformal superalgebra relations (written in different basis)
- Sacrificing of manifest Lorentz covariance reveals a picture of spacetime with two rotation groups
- Mere introduction of preferred direction with respect to one of these groups [i.e. breaking it to U(1)] can recover observable Poincare symmetry
- The simplest representation of this algebra has interesting properties (chiral symmetry = e.m. duality, motion equations = mathematical identities, form of supersymmetry transformations)

Change of basis – part l

• Start with four pairs of parabose operators a and a^+ which satisfy:

 $[\{\hat{a}_{\alpha}, \hat{a}_{\beta}\}, \hat{a}_{\gamma}] = 0, \qquad [\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\}, \hat{a}_{\gamma}] = -2\delta_{\beta}^{\gamma}\hat{a}_{\alpha}$

Switch to hermitian combinations:

 $S^{\alpha} \equiv (\hat{a}_{\alpha} + \hat{a}_{\alpha}^{\dagger}), \qquad Q_{\alpha} \equiv -i(\hat{a}_{\alpha} - \hat{a}_{\alpha}^{\dagger}).$ consequently satisfying:

 $[\{Q_{\alpha}, Q_{\beta}\}, Q_{\gamma}] = 0,$ $[\{Q_{\alpha}, Q_{\beta}\}, S^{\gamma}] = -4i\delta^{\gamma}_{\beta}Q_{\alpha} - 4i\delta^{\gamma}_{\alpha}Q_{\beta}, \qquad [\{S^{\alpha}, S^{\beta}\}, Q_{\gamma}] = 4i\delta^{\beta}_{\gamma}S^{\alpha} + 4i\delta^{\alpha}_{\gamma}S^{\beta},$ $[\{S^{\alpha}, Q_{\beta}\}, S^{\gamma}] = 4i\delta^{\gamma}_{\beta}S^{\alpha},$

 $[\{S^{\alpha}, S^{\beta}\}, S^{\gamma}] = 0,$ $[\{Q_{\alpha}, S^{\beta}\}, Q_{\gamma}] = 4i\delta^{\beta}_{\gamma}Q_{\alpha}.$

Change of basis – part Ila Basis of 4 by 4 real matrices

6 antisymmetric matrices:

$$\begin{aligned} [\sigma_i, \sigma_j] &= 2\varepsilon_{ijk}\sigma_k\\ [\tau_{\underline{i}}, \tau_{\underline{j}}] &= 2\varepsilon_{\underline{ijk}}\tau_{\underline{k}}\\ [\sigma_i, \tau_{\underline{j}}] &= 0 \end{aligned}$$

10 symmetric matrices:

$$\begin{array}{l} \alpha_{\underline{i}j} \equiv \tau_{\underline{i}}\sigma_j \\ \alpha_0 \equiv 1 \end{array}$$

	$\sigma_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$ $\tau_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, σ_2 $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$, τ_2	$= \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$ $= \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{array}{ccccccc} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \\ \end{array}$	$\left. \begin{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} -1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}$.	
$\alpha_{11} =$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0 & 0 \\ 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{array}$	$\left(, \alpha_{12} \right)$	$= \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$	$, \alpha_{13} =$	$= \begin{pmatrix} 0 \\ -1 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{c} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array} $	
$\alpha_{21} =$	$\left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & -1 \end{array} \right)$	$ \begin{array}{cccc} 1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \\ \end{array} $	$, \alpha_{22} =$	$ \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\Big), \alpha_{23} =$	$=-\left(egin{array}{c} 0\\ 0\\ 0\\ 1\end{array} ight)$	$\left(\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right),$	ľ
$\alpha_{31} = \cdot$	$-\begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\alpha_{32} =$	$ \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & -1 \\ 1 & 0 \end{pmatrix} $	$ \begin{array}{cccc} 0 & 1 \\ -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 \end{array} $	$), \alpha_{33} =$	$= \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{array}$	

Change of basis – part IIb

Introduce a new basis for expressing of parabose anticommutators:

$$\begin{split} \hat{J}_{i} &\equiv \frac{1}{8} (\sigma_{i})^{\alpha}_{\ \beta} \{Q_{\alpha}, S^{\beta}\}, \qquad Y_{\underline{i}} \equiv \frac{1}{8} (\tau_{\underline{i}})^{\alpha}_{\ \beta} \{Q_{\alpha}, S^{\beta}\}, \\ \hat{N}_{\underline{i}j} &\equiv \frac{1}{8} (\alpha_{\underline{i}j})^{\alpha}_{\ \beta} \{Q_{\alpha}, S^{\beta}\}, \qquad \hat{D} \equiv (\alpha_{0})^{\alpha}_{\ \beta} \{Q_{\alpha}, S^{\beta}\}, \\ \hat{P}_{\underline{i}j} &\equiv \frac{1}{8} (\alpha_{\underline{i}j})^{\alpha\beta} \{Q_{\alpha}, Q_{\beta}\}, \qquad \hat{P}_{0} \equiv \frac{1}{8} (\alpha_{0})^{\alpha\beta} \{Q_{\alpha}, Q_{\beta}\}, \\ \hat{K}_{\underline{i}j} &\equiv -\frac{1}{8} (\alpha_{\underline{i}j})_{\alpha\beta} \{S^{\alpha}, S^{\beta}\}, \qquad \hat{K}_{0} \equiv \frac{1}{8} (\alpha_{0})_{\alpha\beta} \{S^{\alpha}, S^{\beta}\}, \end{split}$$

Starting parabose relations obtain a new form:

 $[\{\hat{a}_{\alpha}, \hat{a}_{\beta}\}, \hat{a}_{\gamma}] = 0, \qquad [\{\hat{a}_{\alpha}, \hat{a}_{\beta}^{\dagger}\}, \hat{a}_{\gamma}] = -2\delta_{\beta}^{\gamma}\hat{a}_{\alpha}$ \bigcup

$$\begin{split} & [\hat{J}_i, Q_\alpha] = -i(\frac{\sigma_i}{2})_\alpha^\beta Q_\beta, \quad [Y_i, Q_\alpha] = -i(\frac{\tau_i}{2})_\alpha^\beta Q_\beta, \qquad [\hat{N}_{ij}, Q_\alpha] = i(\frac{\alpha_{ij}}{2})_\alpha^\beta Q_\beta, \\ & [\hat{J}_i, S^\alpha] = -i(\frac{\sigma_i}{2})_\beta^\alpha S^\beta, \quad [Y_i, S^\alpha] = -i(\frac{\tau_i}{2})_\beta^\alpha S^\beta, \qquad [\hat{N}_{ij}, S^\alpha] = -i(\frac{\alpha_{ij}}{2})_\beta^\alpha S^\beta, \\ & [\hat{K}_0, Q_\alpha] = i(\alpha_0)_{\alpha\beta} S^\beta, \quad [\hat{K}_{ij}, Q_\alpha] = -i(\alpha_{ij})_{\alpha\beta} S^\beta, \quad [\hat{K}_0, S^\alpha] = [\hat{K}_{ij}, S^\alpha] = 0, \\ & [\hat{P}_0, S^\alpha] = -i(\alpha_0)^{\alpha\beta} Q_\beta, \quad [\hat{P}_{ij}, S^\alpha] = -i(\alpha_{ij})^{\alpha\beta} Q_\beta, \quad [\hat{P}_0, Q_\alpha] = [\hat{P}_{ij}, Q_\alpha] = 0, \\ & [\hat{D}, Q_\alpha] = i(\frac{1}{2})Q_\alpha, \qquad [\hat{D}, S^\alpha] = -i(\frac{1}{2})S^\alpha. \end{split}$$

"Extended" conformal superalgebra

+ bosonic part of algebra

Green's ansatz representations

• Green's ansatz (combined with Klain's transformation):

$$\begin{aligned} Q_{\alpha} &= \sum_{a=1}^{p} \hat{I}_{(1)} \hat{I}_{(2)} \cdots \hat{I}_{(a-1)} \hat{Q}_{\alpha}^{a} \qquad S^{\alpha} = \sum_{a=1}^{p} \hat{I}_{(1)} \hat{I}_{(2)} \cdots \hat{I}_{(a-1)} \hat{S}_{a}^{\alpha} \\ \hat{I}_{(a)}^{-1} \hat{Q}_{\alpha}^{b} \hat{I}_{(a)} &= (-)^{\delta_{ab}} \hat{Q}_{\alpha}^{b}, \qquad \hat{I}_{(a)}^{-1} \hat{S}_{b}^{\alpha} \hat{I}_{(a)} &= (-)^{\delta_{ab}} \hat{S}_{b}^{\alpha} \\ \hat{S}_{a}^{\alpha}, \hat{Q}_{\beta}^{b}] &= i \delta_{\beta}^{\alpha} \delta_{a}^{b} \hat{1}; \qquad [\hat{Q}_{\alpha}^{a}, \hat{Q}_{\beta}^{b}] = [\hat{S}_{a}^{\alpha}, \hat{S}_{b}^{\beta}] = 0; \ a, b = 1, 2, \dots p \end{aligned}$$

 In Green's ansatz p=1 representation parabose algebra reduces to bose algebra and operators Q and S satisfy Heisenberg algebra

$$[\hat{S}^{\alpha}, \hat{Q}_{\beta}] = i\delta^{\alpha}_{\beta}\,\hat{1} \qquad [\hat{Q}_{\alpha}, \hat{Q}_{\beta}] = [\hat{S}^{\alpha}, \hat{S}^{\beta}] = 0$$

Important identities for p=1

$$(\alpha_0)_{\alpha\beta}(\alpha_0)_{\gamma\delta} + \sum_{ij} (\alpha_{ij})_{\alpha\beta}(\alpha_{ij})_{\gamma\delta} - \sum_i (\tau_i)_{\alpha\beta}(\tau_i)_{\gamma\delta} - \sum_i (\sigma_i)_{\alpha\beta}(\sigma_i)_{\gamma\delta} = 4\delta_{\beta\gamma}\delta_{\alpha\delta}$$

- Poencare mass is zero: $\eta^{\mu\nu}\hat{P}_{\mu}\hat{P}_{\nu} \stackrel{d}{=} (\hat{P}_{0})^{2} - (\hat{P}_{1})^{2} - (\hat{P}_{2})^{2} - (\hat{P}_{3})^{2} = 0$ Y₃ is helicity: $\vec{\hat{P}}\vec{\hat{J}} = \hat{P}^{0}\hat{Y}_{3}$
- Also, e.g.: $\varepsilon_{\underline{i}\underline{j}\underline{k}}\varepsilon_{\underline{k}mn}P_{\underline{i}l}P_{\underline{j}m} = P_0P_{\underline{k}n}$

 $\hat{P}_{\underline{i}j}\hat{P}_{\underline{i}k} = \delta_{jk}(\hat{P}_0)^2; \qquad \hat{P}_{\underline{j}i}\hat{P}_{\underline{k}i} = \delta_{\underline{j}\underline{k}}(\hat{P}_0)^2$

p=1 Hilbert space bases

- The most straightforward basis $S = \{ |S^1, S^2, S^3, S^4 \rangle | S^1, S^2, S^3, S^4 \in \mathcal{R} \}; \quad \hat{S}^{\alpha} | S^1, S^2, S^3, S^4 \rangle = S^{\alpha} | S^1, S^2, S^3, S^4 \rangle$ $Q = \{ |Q_1, Q_2, Q_3, Q_4 \rangle | Q_1, Q_2, Q_3, Q_4 \in \mathcal{R} \}; \quad \hat{Q}_{\alpha} | Q_1, Q_2, Q_3, Q_4 \rangle = Q_{\alpha} | Q_1, Q_2, Q_3, Q_4 \rangle$
 - Momentum-helicity representation
 $$\begin{split} Y_{\underline{3}}|p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle &= \mathbf{y}_{\underline{3}}|p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle, \quad \mathbf{y}_{\underline{2}} = 0, \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \dots \\ P^{1}|p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle &= p \sin\theta\cos\varphi |p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle, \quad p \in [0,\infty) \\ P^{2}|p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle &= p \sin\theta\sin\varphi |p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle, \quad \theta \in [0,\pi] \\ P^{3}|p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle &= p \cos\theta |p,\theta,\varphi,\mathbf{y}_{\underline{3}}\rangle, \quad \varphi \in [0,2\pi) \end{split}$$

Scalar field representation

• Define states: $|\phi(x)\rangle \stackrel{\mathrm{d}}{=} \int\limits_{\mathcal{R}^3} \frac{d^3p}{(2\pi)^{3/2}} \frac{1}{\sqrt{2p^0}} e^{ip_{\mu}x^{\mu}} |\vec{p}, \mathbf{y}_{\underline{3}} = 0 \rangle$

 $\phi_f(x) \stackrel{\mathrm{d}}{=} \langle \phi(x) | f \rangle \qquad \phi_f(x) \stackrel{\Lambda}{\longrightarrow} \phi_f'(x) = \phi_f(\Lambda^{-1}x)$

- Symmetry generators act in the standard way $P_{\mu}\phi_{f}(x) \stackrel{d}{=} \langle \phi(x) | \hat{P}_{\mu} | f \rangle = i \frac{\partial}{\partial x^{\mu}} \phi_{f}(x)$ $M_{\mu\nu}\phi_{f}(x) \stackrel{d}{=} \langle \phi(x) | \hat{M}_{\mu\nu} | f \rangle = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu})\phi_{f}(x)$
- Klain-Gordon equation

$$0 = \langle \phi(x) | (-P^{\mu} P_{\mu}) | f \rangle = \partial^{\mu} \partial_{\mu} \phi_f(x)$$

• Dirac equation:

$$0 = \langle \psi_{\alpha}(x) | \hat{P}_0 \hat{Y}_3 + \sum_i \hat{P}_i \hat{J}_i | f \rangle \implies i \gamma^{\mu} \partial_{\mu} \psi_f(x) = 0$$

 $\gamma_0 = i \tau_{\underline{2}}, \qquad \gamma_l = \gamma_0 \, \alpha_{\underline{3}l} = i \tau_{\underline{1}} \sigma_l, \qquad \gamma_5 = -i \gamma_0 \gamma_1 \gamma_2 \gamma_3 = i \tau_{\underline{3}}.$

Helicity ±1field representation

• Define

 $|E_i(x)\rangle \stackrel{\rm d}{=} 2\hat{P}_{\underline{1}i}|\phi(x)\rangle \qquad |B_i(x)\rangle \stackrel{\rm d}{=} -2\hat{P}_{\underline{2}i}|\phi(x)\rangle$

• Y₃ generates e.m. duality symmetry

 $|f\rangle \rightarrow \exp(i\phi \hat{Y}_{\underline{3}})|f\rangle \Longrightarrow \begin{cases} E_{f_{\ell}}(x) \longrightarrow E'_{f_{\ell}}(x) = E_{f_{\ell}}(x)\cos\phi - B_{f_{\ell}}(x)\sin\phi, \\ B_{f_{\ell}}(x) \longrightarrow B'_{f_{\ell}}(x) = E_{f_{\ell}}(x)\sin\phi + B_{f_{\ell}}(x)\cos\phi. \end{cases}$

Maxwell equations:

$$\begin{split} \vec{\nabla} \vec{E}_{f}(x) &= \langle \phi(x) | 2(\hat{P}_{\underline{3}1}\hat{P}_{\underline{1}1} + \hat{P}_{\underline{3}2}\hat{P}_{\underline{1}2} + \hat{P}_{\underline{3}3}\hat{P}_{\underline{1}3}) | f \rangle = 0, \\ \vec{\nabla} \vec{E}_{f}(x) &= \langle \phi(x) | 2(\hat{P}_{\underline{3}1}\hat{P}_{\underline{2}1} + \hat{P}_{\underline{3}2}\hat{P}_{\underline{2}2} + \hat{P}_{\underline{3}3}\hat{P}_{\underline{2}3}) | f \rangle = 0, \\ (\vec{\nabla} \times \vec{E}_{f}(x))_{i} &= \langle \phi(x) | 2\varepsilon_{ijk}\hat{P}_{\underline{3}j}\hat{P}_{\underline{1}k} | f \rangle = \langle \phi(x) | 2\hat{P}_{0}\hat{P}_{\underline{2}i} | f \rangle = -\partial_{0}B_{f_{i}}(x), \\ (\vec{\nabla} \times \vec{E}_{f}(x))_{i} &= -\langle \phi(x) | 2\varepsilon_{ijk}\hat{P}_{\underline{3}j}\hat{P}_{\underline{2}k} | f \rangle = \langle \phi(x) | 2\hat{P}_{0}\hat{P}_{\underline{1}i} | f \rangle = \partial_{0}E_{f_{i}}(x). \end{split}$$

Field representation of arbitrary helicity

Define

$$\begin{split} |F_{h,s}(x)\rangle &= (\hat{u}_{\frac{1}{2}})^{h+s} (\hat{u}_{-\frac{1}{2}})^{h-s} |\phi(x)\rangle, \quad h \ge 0\\ |F_{h,s}(x)\rangle &= (\hat{v}_{\frac{1}{2}})^{|h|+s} (\hat{v}_{-\frac{1}{2}})^{|h|-s} |\phi(x)\rangle, \quad h < 0\\ \text{where} \quad \hat{u}_{\frac{1}{2}} \stackrel{\mathrm{d}}{=} \hat{Q}_1 + i\hat{Q}_3, \qquad \hat{u}_{-\frac{1}{2}} \stackrel{\mathrm{d}}{=} \hat{Q}_2 + i\hat{Q}_4\\ \hat{v}_{\frac{1}{2}} \stackrel{\mathrm{d}}{=} \hat{Q}_2 - i\hat{Q}_4, \qquad \hat{v}_{-\frac{1}{2}} \stackrel{\mathrm{d}}{=} \hat{Q}_1 - i\hat{Q}_3 \end{split}$$

• Field representation of helicity h is $F_{f_s}^{(h)}(x) = \langle F_{h,s}(x)|f \rangle \quad s = -|h|, -|h|+1, \dots, |h|.$

Supersymmetry transformations

• Supermultiplets are infinite:

$$\begin{split} \delta\phi_f(x) &= i\bar{\xi}^{\alpha}\langle\phi(x)|\sqrt{2}\hat{Q}_{\alpha}|f\rangle = i\bar{\xi}^{\alpha}\psi_{f\alpha}(x) \\ \delta\psi_{f\alpha}(x) &= i\bar{\xi}^{\beta}\langle\psi_{\alpha}(x)|\sqrt{2}\hat{Q}_{\beta}|f\rangle \\ &= -\xi^{\beta}(\gamma^{\mu})_{\beta\alpha}\partial_{\mu}\phi_f(x) + i\xi^{\beta}(\sigma_{\mu\nu})_{\beta\alpha}F_f^{\mu\nu}(x) \end{split}$$

 $\delta F_f{}^{\mu\nu}(x) = \cdots$

Comparison

	Standard supersymmetry	Generalized supersymmetry		
Complexity = min number of defining rel.	Significantly more than 2	2		
Need for symmetry breaking	yes	yes		
Which symmetry is higher?				
Spacetime metric introduced by hand?	yes	no		
Existence of fully developed models	yes	no		

Awaits for investigation...