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Introduction

• AdS/CFT correspondence

• The interpretation of the matrix eigenvalues as fermions allows a de-

scription of gravitational excitations in the holographic dual of N = 4

SYM in terms of droplets in the phase space occupied by fermions. The

giant gravitons expanding along AdS5 and S5 could be interpreted as

a single excitation high above the Fermi sea, or as a hole in the Fermi

sea, respectively (Berenstein)

• The correspondence between the general fermionic droplet and the clas-

sical ansatz for the AdS configuration (LLM)

• The matrix model with the harmonic-oscillator potential is related to

the free matrix model via su(1, 1) algebra which contains Hamitonians

of both models as generators. As a consequence, their eigenstates are

related via coherent states or by time reparametrization.
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Matrix model and the collective-field formulation

The dynamics of the one-matrix model is defined by the action (BIPZ)

S =

∫
dt

(
1

2
TrṀ2(t) − V (M)

)

with the N × N matrix M being

M=R real symmetric O(N) invariant

M=H complex hermitian U(N) invariant

M=Q quaternionic real Sp(N) invariant

M = UΛU †

Ṁ = U
(
Λ̇ + [U−1U̇ , Λ]

)
U †

Conserved quantity:

J = [M, Ṁ ] = U
(
[Λ, Λ̇] + [Λ, [U−1U̇ , Λ]]

)
U †

TrṀ2 = TrΛ̇2 +
∑

a6=b

(U−1JU)ab(U
†JU)ba

(λa − λb)2

M =




λ1 . . .

λN


 → x1 . . . xN

On a singlet subspace the free matrix model reduces to the quantum mechan-

ics of the N eigenvalues of the matrix M . The dynamics of the eigenvalues

is determined by the QM Hamiltonian

HQM = −1

2

∑

i

d2

dx2
i

+ λ(λ − 1)
∑

i<j

1

(xi − xj)2

Introduction of the invariant measure over the matrix configuration space into

the wavefunctions produces a prefactor
∏N

i<j(xi −xj)
λ. λ determines the
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number of independent matrix elements nλ in the case of real-symmetric,

hermitian and quaternionic-real matrices:

nλ = λN(N − 1) + N

and λ = 1/2, 1, 2, respectively.

In the large-N limit, we introduce the collective field variables (Jevicki,

Sakita)

ρk(t) = Tre−ikM(t), ρ(x, t) =

∫
dk

2π
eikxρk(t)

The free matrix Hamiltonian on singlet space

H =
1

2

∫ ∫
dxdyπ(x)Ω[ρ; x, y]π(y) − i

2

∫
dxω[ρ; x]π(x)

where ∫
dxρ(x) = N, π(x) = −iδ/δρ(x)

and Ω and ω are to be determined by transformation from quantum me-

chanics to collective field theory. Using the chain rule

∂

∂mij
α

→
∫

dx
∂ρ(x)

∂mij
α

δ

δρ(x)

one finds

Ω[ρ; x, y] = ∂2
xy [δ(x − y)ρ(y)]

ω[ρ; x] = (λ − 1)∂2
xρ(x) + 2λ∂xρ(x)−

∫
dy

ρ(y)

x − y

After hermitization

H =
1

2

∫
dxρ(x)

(
λ − 1

2

∂xρ(x)

ρ
+ λ−

∫
dy

ρ(y)

x − y

)2

− µ

∫
dxρ(x)

+
1

2

∫
dxρ(x)(∂xπ)2 − λ − 1

4

∫
dx∂2

xδ(x − y)|y=x − λ

2
−
∫

dx∂x

1

x − y
|y=x
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Conformal invariance

Corresponding Lagrangian density

L(ρ, ρ̇) =
1

2

(∂−1
x ρ̇)2

ρ
− 1

2
ρ

[
(λ − 1)

2

∂xρ

ρ
+ λ−

∫
dy

ρ(y)

x − y

]2

where ∂−1
x ρ̇ is short for

∫ x
dyρ̇(y).

The action possesses three kinds of symmetry: time translation, scaling and

special conformal tranformation:

t′ = t − εtn

for n = 0, 1, 2, respectively. Under these transformations

x′ =

(
∂t′

∂t

)dx

x

ρ′(x′, t′) =

(
∂t′

∂t

)dρ

ρ(x, t)

dx′dt′ =

(
∂t′

∂t

)dx+1

dxdt

and

dx = 1/2, dρ = −1/2

The conserved charges

Q =

∫
dx

δL
δρ̇

δρ − A(ρ, ρ̇), ; δS =

∫
dt

dA(ρ, ρ̇)

dt

One calculates

δρ = ρ′(x, t)−ρ(x, t) = (−dρntn−1+dxntn−1x∂x+tn∂t)ρ(x, t)

and

A = −n(n − 1)

4

∫
dxx2ρ +

tn

2

∫
dxL
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For n = 0, 1, 2

Q0 = H ≡ QT

Q1 = −1

2

∫
dxρ(x)∂xπ(x) + tH ≡ QS

Q2 =
1

2

∫
dxx2ρ(x) − t

∫
dxxρ(x)∂xπ(x) +

t2

2
H ≡ QC

These conserved quantities close the algebra of the conformal group in one

dimension with respect to the classical Poisson brackets

{QT , QS}PB = QT , {QC, QS}PB = −QC , {QT , QC}PB = 2QT

Q0(t = 0) → T+

Q1(t = 0) → T0 SU(1, 1) : [T+, T−] = −2T0

Q2(t = 0) → T− [T0, T±] = ±T±

From zero-energy eigenfunctional construct eigenfunctional of energy E

as a coherent state of Barut-Girardello type, using spectrum generating

SU(1, 1) algebra.
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Matrix model, Riccati equation and boundary fields

The leading part of the collective-field Hamiltonian in the 1/N expansion

Veff =
1

2

∫
dxρ(x)

[
λ − 1

2

∂xρ(x)

ρ(x)
− λπρH(x)

]2

where

ρH(x) = −1

π
−
∫

dy
ρ(y)

x − y

The effective potential can be rewritten as

Veff =
1

2

∫
dxρ(x)

[
λ − 1

2

∂xρ(x)

ρ(x)
+

q(1 − λ)

2
Pcot

(
qx

2
+ ϕ

)
−

− λπρH(x)
]2

+ E0,

where

Pcot(qx/2 + ϕ) = lim
ε→0

sin(qx + 2ϕ)

cosh ε − cos(qx + 2ϕ)

Assuming the compact support [−L/2, L/2], using
∫

dxρ(x) = N and

the identity

(fHg + fgH)H = fHgH − fg + f0g0,

(
f0

g0

)
=

1

L

∫
dx

(
f(x)

g(x)

)

one obtains

E0 =
qN(1 − λ)

8

[
(1 − λ)q + 2πλ

N

L

]
+

+
q(λ − 1)2

4
ρ(x)Pcot

(
qx

2
+ ϕ

)∣∣∣∣
L/2

−L/2

+

+
qπλ(λ − 1)L

4

(
ρ2(x) − ρH2

(x)
)∣∣∣

x=−2ϕ/q
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q and ϕ are free parameters to be determined by boundary conditions such

that the last two terms should vanish and by the condition that E0 should

be a non-negative constant. The contribution of Veff to the Hamiltonian

is minimized by a solution of

∂xρ = qPcot

(
qx

2
+ ϕ

)
ρ +

λπ

λ − 1
2ρρH

Find the equation for ρH ,

∂xρH = qPcot

(
qx

2
+ ϕ

)
ρH − qρ0 − λπ

λ − 1

(
ρ2 − ρH2 − ρ2

0

)

Construct the field Φ containing only the positive frequency part of ρ

Φ = ρH + iρ =
1

π

∫
dz

ρ(z)

z − x − iε

and satisfying the Riccati differential equation

∂xΦ =
λπ

λ − 1
Φ2 + qPcot

(
qx

2
+ ϕ

)
Φ +

λπρ2
0

λ − 1
− qρ0

If Φ satisfies

ΦH(x) = iΦ(x) + ρ0

then

ρ = −i(Φ − Φ∗)/2
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Semiclassical solutions

1) The case λ < 1

Φs(x) =
iq(1 − λ)

λπ(et − 1)

1 − ei(qx+2ϕ)

1 − e−tei(qx+2ϕ)

ρs(x) =
q(1 − λ) coth(t/2)

2πλ

1 − cos(qx + 2ϕ)

cosh t − cos(qx + 2ϕ)

E0 =
(1 − λ)π2

2L2
[λN2M + (1 − λ)NM2]

where

et = 1 +
q(1 − λ)

λπρ0

With the boundary conditions

ρH(−2ϕ

q
) = ρ(−2ϕ

q
) = 0, Pcot(

qL

4
+ ϕ) = 0

we find

q = 2πM/L, M ∈ N

where the number M can be interpreted as the number of solitons. In order

to have odd M , we take ϕ = 0, whereas for even M we take ϕ = π/2.

Taking into account the normalization condition, we find

et = 1 +
2M(1 − λ)

Nλ

From the M -soliton solution in the limit L → ∞, keeping ρ0 fixed and

defining

b = (1 − λ)/(λπρ0)

we find the one-soliton solution (M = 1, ϕ = 0).
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Φs(x) =
1 − λ

λπb

ix

x + ib

ρs(x) =
1 − λ

λπb

x2

x2 + b2

E0 =
(1 − λ)3

2λb2

The uniform zero-energy solution ρ(x) = ρ0 is obtained in the limit

q → 0, taking ϕ = π/2.

2) The case λ > 1

We take q = 0, ϕ = π/2, thus eliminating the term Pcot from Veff ,

and obtain a general solution

Φs(x) =
ik(λ − 1)

2πλ

1 + e−teikx

1 − e−teikx

ρs(x) =
k(λ − 1)

2πλ

sinh t

cosh t − cos kx
E0 = 0

with k = 2πM/L and non-negative free parameter t.

In limit L → ∞, taking t = 2πb/L we obtain

Φs(x) =
1 − λ

λπ

1

x + ib

ρs(x) =
λ − 1

λπ

b

x2 + b2

E0 = 0

In the case t → ∞, we obtain the constant density solution ρ(x) = ρ0.

Taking into account the normalization condition we obtain that the number

of solitons M exceeds the number of particles N giving us the relation

λ = M/(M − N)
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Quantum excitations around semiclassical solutions

Expand the Hamiltonian around the semiclassical solution

ρ(x, t) = ρs(x) + ∂xη(x, t)

up to the quadratic terms in η

H(2) =
1

2

∫
dxρs(x)A†(x)A(x)

where we have introduced the operators A

A = −πη + i

[
(λ − 1)

2
∂x

∂xη

ρs

− πλ∂xηH

]

satisfying the following equal-time commutation relation:

[
A(x), A†(y)

]
= (1 − λ)∂2

xy

δ(x − y)

ρ0

+ 2λ∂x

P

x − y

Using the equation of motion Ȧ(x, t) = i[H, A(x, t)], we obtain
[
−i∂t +

λ − 1

2

∂xρs

ρs

∂x − λ − 1

2
∂2

x

]
(ρsA) = −λπρs∂x(ρsA)H

Taking the Hilbert transform of this equation
[
−i∂t +

λ − 1

2

∂xρs

ρs

∂x − λ − 1

2
∂2

x

]
(ρsA)H = λπρs∂x(ρsA)

Defining the fields

Φ±
s = ρH

s ± iρs, φ± = (ρsA)H ± i(ρsA)

we find that φ± satisfies
{

i∂t −
[
λπΦ±

s +
q(λ − 1)

2
Pcot

(
qx

2
+ ϕ

)]
∂x +

λ − 1

2
∂2

x

}
φ± = 0

(Note: one can interpret the field φ as a fluctuation around the conformal

field Φs.)
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Solving previous equation for the semiclassical solution, we obtain the fol-

lowing results:

-the operator A is given by

A =
2π

L

∑
n,s

eiωntfn,s(x)
[
θ(ωn)an,s + θ(−ωn)a

†
n,s

]

where the operators an,s satisfy

[an,s, a†
m,s′] = |ωn|L/πδnmδss′

and the functions fn,s are orthonormalized

∫ L/2

−L/2

dxρs(x)f∗
n,s(x)fm,s′(x) =

L

2π
δnmδs,s′

-the Hamiltonian up to quadratic terms is given by

H = E0 +
π

L

∑
n,s

a†
n,san,s +

∑
n,s

θ(−ωn)|ωn|
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λ
ρ

s
f

n
,±

ω
n

q
(1

−
λ
)
c
o
th

(t
/
2
)

2
π

λ

1
−

c
o
s(

q
x
+

2
ϕ
)

c
o
sh

t−
c
o
s(

q
x
+

2
ϕ
)

√
λ
(
k
0
+

q
)
(
k

n
+

q
)

4
(
1

−
λ
)
k
0

k
n

(
2

k
0
+

q
)

( 1
−

k
n

e
±

i
(
q

x
+

2
ϕ
)

k
n

+
q

)(
1
−

k
0

e
∓

i
(
q

x
+

2
ϕ
)

k
0
+

q

)
e

±
i
(
k

n
−

k
0
)
x

1
−

c
o
s
(
q

x
+

2
ϕ
)

k
n

>
k
0

1
−

λ
2

(k
n
+

k
0
+

q)
(k

n
−

k
0
)

λ
<

1
1
−

λ
λ

π
b

x
2

x
2
+

b
2

√
λ

2
k
0
(
1

−
λ
)
(1

±
i

k
n

x
)( 1

∓
i

k
0

x

)
e

±
i
(
k

n
−

k
0
)
x

k
n

>
k
0

1
−

λ
2

(k
2 n

−
k
2 0
)

ρ
0

1
√

2
π

ρ
0

e
±

i
(
k

n
−

k
0
)
x

k
n

>
k
0

1
−

λ
2

(k
2 n

−
k
2 0
)

k
(λ

−
1
)

2
π

λ
si

n
h

t
c
o
sh

t−
c
o
s

k
x

√
λ

2
k
0
(
λ

−
1
)
(1

−
e

−
2

t
)
(1

−
e

−
t

e
∓

2
i
k
0

x
)

e
±

i
(
k

n
+

k
0
)
x

k
n

>
−

k
0

λ
−

1
2

(k
2 0
−

k
2 n
)

λ
>

1
λ

−
1

λ
π

b
x
2
+

b
2

√
λ

2
b
(
λ

−
1
)
(x

∓
ib

)
e

±
i
k

n
x

k
n

>
0

−
λ

−
1

2
k
2 n

ρ
0

1
√

2
π

ρ
0

e
±

i
(
k

n
+

k
0
)
x

k
n

>
−

k
0

λ
−

1
2

(k
2 0
−

k
2 n
)

T
ab

le
1:

E
x
ci

ta
ti

on
s

ar
ou

n
d

B
P

S
so

lu
ti

on
s
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Discussion and interpretation of the results

About the model

• Why free model?

Under coordinate reparametrization and field rescaling

x =
x′

sinh t′ , t = tanh t′, ρ(x, t) = ρ(x′, t′) cosh t′

the kinetic term induces the harmonic potential (Avan, Jevicki)

∫
dxdt

(
∂−1

x ρ̇
)2

ρ
=

∫
dx′dt′




(
∂−1

x′ ρ̇′
)2

ρ′ + x′2ρ′(x′, t′)




and other terms in the Lagrangian remain invariant and therefore all

three matrix models have background independence. This property en-

ables us to concentrate the discussion on the free models.

• Interpretation of Pcot term.

It was shown that adding the term (1 − λ)/(x − z) into the effective

potential was equivalent to the extraction of the prefactor
∏

i(xi −
z)1−λ from the wave function of QM Hamiltonian. This equivalence

enables us to associate a quasi-particle located at z with the prefactor of

the wave function. Consequently, the additional term Pcot(qx/2+ϕ)

is associated with the prefactor describing M equidistant quasi-particles.

• Compact support.

Solitons on the compact support are of the same shape as solitons in

the Sutherland model, thus reflecting the fact that the two models are

interrelated via the periodicity condition.

About the solutions

• λ ↔ 1/λ duality.

There exists a simple relation between systems with λ < 1 and those

with λ > 1. By substituting λρ(x) = α − m(x) into Bogomol’nyi
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eq. for λ > 1 (without the term Pcot) and by inserting explicit forms

of the solutions for the term ρH/ρ, we find that the field m satisfies

Bogomol’nyi eq. for λ′ = 1/λ < 1 (with the term Pcot). This

agrees with the result obtained by Minahan and Polychronakos in the

k-space (ρk → −mk/λ).

• Giant gravitons?

The soliton solutions we have found in the collective-field formulation

of the free matrix model correspond to the particle and hole states in

the system of nonrelativistic fermions (Jevicki). Owing to the su(1, 1)

dynamical symmetry, the eigenstates of the QM Hamiltonian can be

represented as generalized coherent states of the same Hamiltonian with

the additional harmonic potential interaction between fermions (AFF;

Perelomov). The particle and hole states in the system of fermions with

the harmonic potential interaction correspond to the giant gravitons

of a 1/2 BPS sector of N = 4 SYM (Corley, Jevicki, Ramgoolam;

Berenstein; LLM). Therefore, our solutions correspond to the coherent

states of the matrix model with the harmonic potential, i.e. to the

quasi-classical CFT duals of the giant gravitons in AdS constructed by

Caldarelli and Silva. The nonexistence of the quasi-classical CFT dual of

the single giant graviton on the sphere S5 is reflected throught the fact

that the soliton with M = 1 in the λ > 1 case is non-normalizable

since M must exceed N .
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Duality-based matrix model

A generalization of the hermitian matrix model defined by the Hamiltonian

H(x, z) =
N∑

i=1

p2
i

2
+

1

2

N∑

i 6=j

λ(λ − 1)

(xi − xj)2
+

1

2

N,M∑

i,α

(κ + λ)(κ −1)

(xi − Zα)2
+

+
λ

κ




M∑
α=1

p2
α

2
+

1

2

M∑

α 6=β

κ2/λ
(
κ2/λ − 1

)

(Zα − Zβ)2




For λ = 1/2 this model arises from the decomposition of the hermitian

matrix into the sum of symmetric and antisymmetric matrix. Transformation

into the hydrodynamic formulation for κ = 1, results in the hermitian

collective-field Hamiltonian

H =
1

2

∫
dxρ(x)(∂xπρ(x))2 +

λ

2

∫
dxm(x)(∂xπm(x))2 +

+

∫
dx

ρ(x)

2

[
λ − 1

2

∂xρ(x)

ρ(x)
+ −

∫
dy

λρ(y)

x − y
+ −

∫
dy

m(y)

x − y

]2

+

+

∫
dx

m(x)

2λ

[
1 − λ

2

∂xm(x)

m(x)
+ −

∫
dy

m(y)

x − y
+ −

∫
dy

λρ(y)

x − y

]2

−

− λ

2

∫
dxρ(x)∂x

P

x − y
|

x=y
− 1

2

∫
dxm(x)∂x

P

x − y
|

x=y

The semiclassical solutions of two coupled Bogomol’nyi equations,

(λ − 1)∂xρ − 2πρ(λρH + mH) = 0

(1 − λ)∂xm − 2πm(λρH + mH) = 0

Based on the duality, we make an ansatz mH = −λαρH/ρ.

(λ − 1)∂xρ − 2λπρρH + 2λαπρH = 0
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Again, the field Φ = ρH + iρ which satisfies the Riccati equation:

∂xΦ =
λπ

λ − 1
Φ2 − i

2λπα

λ − 1
Φ +

λπρ0

λ − 1
(ρ0 − 2α)

The general solution of this equation constructed from the constant solution

Φ = iρ0 is

Φ(x)= iρ0 − λ − 1

λπ

iqceiqx

1 + ceiqx
, q =

2λπ(α − ρ0)

1 − λ
> 0

The solutions for ρ and m (c = eiφ−u−v, |c| < 1) are

ρ(x) = α
cosh(u − v) + cos(qx + φ)

cosh(u + v) + cos(qx + φ)
, m(x) =

c̃

ρ(x)

q =
4λπα

1 − λ

sinh u sinh v

sinh(u + v)
,

c̃

λα2
=

sinh(u − v)

sinh(u + v)
, u > v > 0

Taking φ = π, sinh(u/2 − v/2) = aq/2, sinh(u/2 + v/2) =

bq/2, b > 0, and the limit q → 0, we obtain the one-soliton solution

ρ(x) = α
x2 + a2

x2 + b2
, m(x) =

λα2a

bρ(x)
, a2 = b2 +

λ − 1

λπα
b



19 / 19

The singular limit

Taking the limit u − v = 2ε → 0

ρ(x) = α
cos2(qx+φ

2
)

sinh2 v + cos2(qx+φ
2

)
, α =

(1 − λ)q

2λπ
coth v

m(x) = (1 − λ)
∞∑

i=−∞
δ(x − xi), xi =

(2i + 1)π − φ

q

and

ρ(x)m(x) → 0


