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Introduction

e AdS/CFT correspondence

e The interpretation of the matrix eigenvalues as fermions allows a de-
scription of gravitational excitations in the holographic dual of N = 4
SYM in terms of droplets in the phase space occupied by fermions. The
giant gravitons expanding along AdS5 and S® could be interpreted as
a single excitation high above the Fermi sea, or as a hole in the Fermi
sea, respectively (Berenstein)

e The correspondence between the general fermionic droplet and the clas-
sical ansatz for the AdS configuration (LLM)

e The matrix model with the harmonic-oscillator potential is related to
the free matrix model via su(1, 1) algebra which contains Hamitonians
of both models as generators. As a consequence, their eigenstates are
related via coherent states or by time reparametrization.
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Matrix model and the collective-field formulation

The dynamics of the one-matrix model is defined by the action (BIPZ)

1 .
S — / dt (ETer(t) _ V(M))
with the NV X IN matrix M being

M=R real symmetric O(N) invariant
M=H complex hermitian U(N) invariant
M=Q quaternionic real Sp(N) invariant

M = UAUT
M=U (A U, A]) Ut

Conserved quantity:

J=[M,M] =U ([A,A] + [A, [U7'U, A]] ) U

. . U'JU) o (UTJU ) pa
Trar? = rri? 4 Y D alUTU),
a0
A1
M = — X1...TN
AN

On a singlet subspace the free matrix model reduces to the quantum mechan-
ics of the IN eigenvalues of the matrix M. The dynamics of the eigenvalues
is determined by the QM Hamiltonian

1 d?
HQM:—EZ@jLA(A—nZ

Introduction of the invariant measure over the matrix configuration space into
the wavefunctions produces a prefactor Hi\ig (z; — x;)>. A determines the
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number of independent matrix elements 71 in the case of real-symmetric,
hermitian and quaternionic-real matrices:

ny=AN(N —1)+ N

and A = 1/2, 1, 2, respectively.
In the large-N limit, we introduce the collective field variables (Jevicki,

Sakita)

. dk .
pu(t) = Tre=* MO oz, t) = / e (1)

The free matrix Hamiltonian on singlet space

H= [ [ dwayw@Slpse,yinty) . [ dowlp i@

where
[ dzp(@) = N, w(@) = ~i5/3p(a)

and €2 and w are to be determined by transformation from quantum me-
chanics to collective field theory. Using the chain rule

0 —>/d Bp(:r:) o

X
amy op(x)

]
omyg
one finds

Qp; x,y] = 82, [0(x — y)p(y)]

wlp; ] = (A —1)82p(x) + zAawp(w)][dy P(y)

— Y

After hermitization

H = %/dmp(af:) (’\ - 139,,,,;(51;) + A][dyw”(_yl,>2 _ p,/da;p(m)

A

A—1 1
/d:l:p(ac)((‘)‘,,:71-)2 - dzd26(x — y)|y—z — Efdm&c

ly==
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Conformal invariance

Corresponding Lagrangian density

1(8;'p)* 1 (>\—1)3m0+>\][dyp(y)r

2 p —ip 2 p r—vy

L(p,p) =
where 8- 1p is short for [* dyp(y).

The action possesses three kinds of symmetry: time translation, scaling and
special conformal tranformation:

t' =1t — et"

for n = 0,1, 2, respectively. Under these transformations

/ d:I:
xr = (8—t> T
ot

at'\ %
pl(wl, t/) — (E) p(aj’ t)
at/ da:"‘l

and

d, =1/2, d, = —1/2

The conserved charges

dA(p, p)

Q /d 6£(5 A(p,p), ; 68 /dt
= r— —_ ; =
5p P PyP), di

One calculates

dp = p'(z,t)—p(x,t) = (—d,nt" ' +d,nt" '8, +t"8;) p(z, t)

n(n — 1) 0 A
A= — 1 /da:a:p—i—;/dwﬁ

and
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Forn =0,1,2
Qo=H =Qr
1
Qi = [ dep(@)d,m(e) + tH = Qs

1 2
Q: = Q/dwwzp(a:) — t/da:wp(a:)awﬂ'(w) + %H = Qc

These conserved quantities close the algebra of the conformal group in one
dimension with respect to the classical Poisson brackets

{QTa QS}PB — QT 7{Q07 QS}PB — _QC 7{QT7QC}PB — 2QT

Qo(t=0) — T4
Ql(t = O) — TO SU(]_, ]_) . [T_|_, T_] = —2T0
Qz(t = 0) — T_ [T(), T:t] = :I:Tj:
From zero-energy eigenfunctional construct eigenfunctional of energy E

as a coherent state of Barut-Girardello type, using spectrum generating
SU (1, 1) algebra.
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Matrix model, Riccati equation and boundary fields

The leading part of the collective-field Hamiltonian in the 1 /N expansion

A—l&mp(w)_ _ H( 2
> p(a) Amp" (z)

pt(z) = —l][dy Py)

. T —vy

oy = faoto|

where

The effective potential can be rewritten as

Vers = %/dwp(w) [)\ ; 18;?;8) + q(12— )\)’Pcot (% + 90> _

T )‘WPH(m)}z + EO?

where

. sin(qzx + 2¢)
t(qz/2 =1
Pco (qa:/ + 90) EE»% cosh € — cos(qw + 290)

Assuming the compact support [—L/2, L /2], using [ dep(x) = N and
the identity

(f"g+ fg™)" = 9" — fg + fogo, (f0> - l/dw (f(w))

go L g(x)
one obtains
N(1— )\ N
Ey = ? (8 )[(1—)\)Q+27T)\f]—|—
A—1)2 T L/2
+ a( ) p(x)Pcot (q_ + go) +
4 2 _L)2
grA(A—1)L , , 72
T (P@ =),
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q and ¢ are free parameters to be determined by boundary conditions such

that the last two terms should vanish and by the condition that Eg should
be a non-negative constant. The contribution of V,¢¢ to the Hamiltonian
is minimized by a solution of

d.p = qPcot (qm + ) + AT appH
P = qPcot | — —
p=gq 5 TPt 720
Find the equation for p,
qx AT 2
d.p" = qPcot (? - 90> p™ — qpo — - (02 —p"" - Pﬁ)

Construct the field ® containing only the positive frequency part of p

1

zZ — @I — 1€

and satisfying the Riccati differential equation

AT

0, P =
A—1

qzx AT p?
®? 4 gPcot (7 + 90> ¢+ 5 _p(l’ — gpo

If ® satisfies

() = i®(x) + po

then
p=—i(® — ") /2
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Semiclassical solutions

1) Thecase A < 1
iqg(l1 — ) 1 — eilaz+2¢)

(I)s(m) = Am(et — 1)1 — e—teilqr+2y)
() = q(1 — X)coth(t/2) 1 — cos(qx + 2¢)
pslit) = 27 cosht — cos(qx + 2¢)
1— A)m?
Ey, = ( ) [AN?M + (1 — A\)NM?]

2172

where

With the boundary conditions
2¢p 2¢p qL
p'(——) = p(——) =0, Pcot(— +¢) =0
q q 4
we find

q=2rM/L, M €N

where the number M can be interpreted as the number of solitons. In order
to have odd M, we take ¢p = 0, whereas for even M we take ¢ = /2.
Taking into account the normalization condition, we find

2M (1 — A)

t
1
€ T

From the M -soliton solution in the limit L — o0, keeping pg fixed and
defining

b= (1—-X)/(Ampo)

we find the one-soliton solution (M = 1, ¢¢ = 0).
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1— )\ x

Atb x + b

(@) 11— x2

s\&L) =

p A7b 22 + b2
B (1—X)3

07 a2

b, (x) =

The uniform zero-energy solution p(x) = pg is obtained in the limit
q — 0, taking p = 7/2.

2) Thecase A > 1
We take ¢ = 0, ¢ = /2, thus eliminating the term Pcot from Vg,
and obtain a general solution

ik(A — 1)1 4 e~ teth®

(@) 2N 1 — e tetkz
kE(A—1) sinh ¢
ps(.’IZ) —
27t cosht — coskx
EO =0

with k = 2w M /L and non-negative free parameter ¢.

In limit L — oo, taking t = 27b/ L we obtain

11— 1
(I)s(w): ;
AT x -+ b
() A—1 b
s\&L) =
p A x? 4+ b2
E(]:O

In the case £ — o0, we obtain the constant density solution p(x) = py.

Taking into account the normalization condition we obtain that the number
of solitons M exceeds the number of particles N giving us the relation

A= M/(M — N)
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Quantum excitations around semiclassical solutions

Expand the Hamiltonian around the semiclassical solution

p(w,t) — pS(CIZ) + an(wa t)

up to the quadratic terms in

H® = [ dop,(2) A} (@) A(a)

where we have introduced the operators A

A—1 0,
A = —71',7—|—’i[( )8:1; n—wAanH
2 Ps
satisfying the following equal-time commutation relation:
6(x —y)
A(@), Al()] = (1 - 082, 4 209,
Po r—Y

Using the equation of motion A(x,t) = i[H, A(x,t)], we obtain
A—10,ps A—1
& Oz — —821 (psA) = _)‘Wpsaw(psA)H
Ps 2
Taking the Hilbert transform of this equation

P Or — ?832;] (psA)H — Aﬂpsaw(psA)
Ps

[—’iat +

[—iat +
Defining the fields
(I);t — pf + ips, ¢i — (psA)H + i(psA)
we find that ¢* satisfies

A—1 A—1
{i@t — [)wrCI)Si + %Pcot (% + go)] 0, + ?85} ¢i =0

(Note: one can interpret the field ¢ as a fluctuation around the conformal
field ®y.)
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Solving previous equation for the semiclassical solution, we obtain the fol-

lowing results:
-the operator A is given by

27 .
A= tnt n,s 0 n)Wn,s 0(— n f
L3 @) [0n)ane +0(—wal,

where the operators a,, s satisfy

(@, ss a,jn,s,] = |wn|L /7T pmdss

and the functions f,, s are orthonormalized
L/2 L
| dwpu(@) @) fnat () = s
—L/2 27
-the Hamiltonian up to quadratic terms is given by

H = E, + %; al, s+ > 0(—wn)|wnl

n,s
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Discussion and interpretation of the results

About the model

e Why free model?
Under coordinate reparametrization and field rescaling

ZU,

T = t = tanht’, p(x,t) = p(z’,t’) cosht’

the kinetic term induces the harmonic potential (Avan, Jevicki)

] ) _
—1 +\2 8:;,1p'/
/dwdtM = /dw'dt' ( ) + z"%p/ (2, t)

and other terms in the Lagrangian remain invariant and therefore all
three matrix models have background independence. This property en-
ables us to concentrate the discussion on the free models.

Interpretation of Pcot term.

It was shown that adding the term (1 — A)/(x — 2) into the effective
potential was equivalent to the extraction of the prefactor [[,(x; —
z)1=* from the wave function of QM Hamiltonian. This equivalence
enables us to associate a quasi-particle located at z with the prefactor of
the wave function. Consequently, the additional term Pcot(qgx /24 )
is associated with the prefactor describing M equidistant quasi-particles.

Compact support.

Solitons on the compact support are of the same shape as solitons in
the Sutherland model, thus reflecting the fact that the two models are
interrelated via the periodicity condition.

About the solutions

e A\ — 1/ duality.
There exists a simple relation between systems with A < 1 and those
with A > 1. By substituting Ap(x) = o — m(x) into Bogomol'nyi
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eq. for A > 1 (without the term Pcot) and by inserting explicit forms
of the solutions for the term pH /p, we find that the field m satisfies
Bogomol'nyi eq. for A’ = 1/X < 1 (with the term Pcot). This
agrees with the result obtained by Minahan and Polychronakos in the
k-space (pr. — —mig /).

Giant gravitons?

The soliton solutions we have found in the collective-field formulation
of the free matrix model correspond to the particle and hole states in
the system of nonrelativistic fermions (Jevicki). Owing to the su(1, 1)
dynamical symmetry, the eigenstates of the QM Hamiltonian can be
represented as generalized coherent states of the same Hamiltonian with
the additional harmonic potential interaction between fermions (AFF;
Perelomov). The particle and hole states in the system of fermions with
the harmonic potential interaction correspond to the giant gravitons
of a 1/2 BPS sector of N = 4 SYM (Corley, Jevicki, Ramgoolam;
Berenstein; LLM). Therefore, our solutions correspond to the coherent
states of the matrix model with the harmonic potential, i.e. to the
quasi-classical CFT duals of the giant gravitons in AdS constructed by
Caldarelli and Silva. The nonexistence of the quasi-classical CFT dual of
the single giant graviton on the sphere S% is reflected throught the fact
that the soliton with M = 1 in the A > 1 case is non-normalizable
since M must exceed V.
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Duality-based matrix model

A generalization of the hermitian matrix model defined by the Hamiltonian

H(z,z) = Z_ _Z >‘(>‘_1) Z ("‘3‘|‘)\)("3_1)_|_

(mz - 533)2 o)?

i": p? 1 Z K2/ (K2/A —1)

2 222 (Za— Zp)?

For A = 1/2 this model arises from the decomposition of the hermitian
matrix into the sum of symmetric and antisymmetric matrix. Transformation
into the hydrodynamic formulation for kK = 1, results in the hermitian
collective-field Hamiltonian

> [ dmp@)@emy@))? + 2 [ dzm(@) @ ()? +
P o fa]
e ok ok

_ %/dmp(w)&mi | —%/dmm(w)c‘? |

— Yaz=y L — Y=y

H

The semiclassical solutions of two coupled Bogomol'nyi equations,

(A= 1)9,p — 2mp(Ap” + mt) =0
(1 —XN)9ym — 2rmAp? + mf) =0

Based on the duality, we make an ansatz m* = —Aap /p.

(A —1)0,p — 2A7wpp™ + 2Xamp =0
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Again, the field ® = p™ + ip which satisfies the Riccati equation:
AT 2T AT
(1)2 B Po

0,P = P
A—1 A—1 +)\—1

(po — 2a0)

The general solution of this equation constructed from the constant solution
P = ’Lpo IS

, A —1 igce'® 227 (a — po)
P(x)=1p9 — : = > 0
() po ATT 1—|—ce7'qf’3’q 1—A
The solutions for p and m (¢ = €'*~“7?, |c| < 1) are
cosh(u — v) + cos(qx + @) C
p(az) = ’ m(w) —
cosh(u + v) 4 cos(qx + ¢) p(x)
A tasinhusinhv ¢ sinh(u — v)
q = ,y u>v >0

T 1o sinh(u +v)’ Aa?  sinh(u + v)

Taking ¢ = m, sinh(u/2 — v/2) = aq/2, sinh(u/2 4+ v/2) =
bg/2, b > 0, and the limit ¢ — 0, we obtain the one-soliton solution

x? + a? Aala A—1
e O Ty TV

b
bp(x) AT

p(r) =



The singular limit

Taking the limit u — v = 2¢ — 0

2(qzx+¢ 1 — X\
p(r) = « 2COS ) , Q= gcothv
sinh” v 4+ cosz(@) 2T
> 21+ 1)m —
m(@)=1-2) Y 8z — ), @ = @it = ¢
: q

1=—00

and
p(x)m(x) — 0
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