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1 INTRODUCTION

The 2-branes (membranes) and 5-branes are the fundamental
dynamical objects in the eleven dimensional M-theory, which is
the strong coupling limit of the five superstring theories in ten
dimensions, and which low energy field theory limit is the eleven
dimensional supergravity.

It is known that large class of classical string solutions in the
type IIB AdSs x S° background is related to the Neumann and
Neumann-Rosochatius integrable systems, including recently dis-
covered spiky strings and giant magnons. It is also interesting if
these integrable systems can be associated with some membrane
configurations in M-theory. 1 will talk about how this can be
achieved by considering several types of membrane embedding in
AdSy x 87 solution of M-theory, with the desired properties.

On the other hand, T could show you the existence of membrane
configurations in AdSy x S”, which correspond to the continuous
limit of the SU(2) integrable spin chain, considered as a limit of the
SU(3) spin chain, both arising in N = 4 SYM in four dimensions,
dual to strings in AdSs x S°.



2 MEMBRANES ON AdSy x S7

The membrane action and constraints in diagonal gauge
Sy = [d¢Ly =
1 " |
/d?’f {Z/-\—O-[Goo o (2/\0T2) det G@'j] + T20012} ,

G()o + <2/\OT2>2 det GZJ e 0,
Gy = 0.

They coincide with the frequently used gauge fixed Polyakov type
action and constraints after the identification 27T, = L = const.
The fields induced on the membrane worldvolume G, and Cyio
are given by

Gmn = gMNamXManXNa

Cor2 = cunpPO XM X"V 8, X7,

Om = 0/0¢™, m=1(0,7) =(0,1,2),

(50751752) - (7-7 0-170-2)7 M - (07 17"'710)7
where gyn and cpyp are the components of the target space
metric and 3-form gauge field respectively.

Searching for membrane configurations in AdSy x S7, which
correspond to the Neumann or Neumann-Rosochatius integrable
systems, we should first eliminate the membrane interaction with
the background 3-form field on AdSy, to ensure more close analogy

with the strings on AdSs x S°. To make our choice, let us write
down the background. It can be parameterized as follows

ds® = (21,R)? |- cosh® pdt® + dp?
+sinh?p <da2 + sin® adﬁ2> + 4dQ$} ,
cs) = (21,R)’sinh® psinadt A da A dB.
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Since we want the membrane to have nonzero conserved energy
and spin on AdS, the possible choice, for which the interaction
with the c(3) field disappears, is to fix the angle o

o = o = const.
The metric of the corresponding subspace of AdS, is
ds?, = (21, R)* [ cosh? pdt* + dp* + sinh? pd(sin aO)Q] :
The appropriate membrane embedding into ds?,, and S7 is
2, = 2R (€)™,
W= (07 1)7 ¢/L (¢07 ¢1> ( IB sin Oé()),
", +1=0, 7" =(-1,1),
W, = 4lpR7’a(€m>ewa(§m)a
= (1, 2,3,4), 5abrarb —1=0.

For this embedding, the induced metric is given by
Gun =1 /‘”8 Z@Z_+5abc’9 W,0, V‘_/b=
(leR) [ Z 77/“/ ( mruanrz/ + I‘2 am¢ua (/)l/)

/‘L)l/_

+ 4 Z ( mTaOnTa + r28m<pa8n<,0a>] .
Correspondingly, the membrane Lagrangian becomes

L= Ly +Aa(nrury, + 1) + As(Saprars — 1).




2.1 MEMBRANES AND THE NEUMANN SYSTEM
First embedding
Zy = 22,Re™, Zy =0, W,=4l,Rry(r)e™i%.

This implies
I'p = 1, = 0, (}5[) = KT, @q = Wy;0;.

Then the membrane Lagrangian takes the form (over-dot is used
for d/dr)
(41,R)?

_ 3 2 2
L= o Lglra (k/2)

4
— (8/\0T2lp72)2 > (Warwpe — Waaws1 )Ty
a<b=1
) <
+ Ag (Z T(zz — l) .

a=1

As far as we are interested in obtaining membrane configurations
with quadratic effective potential, our proposal is to make the fol-
lowing choice (a, b, ¢ # 0 are constants)

wig =wyp = w3 =wy =0, wi=Fwy =w,
r3(7) = asin(br +¢), 74(7) =acos(br +¢), a <1l

This reduces £ to (after neglecting the constat terms)

I

2
+ Ag[zrg—(l—az)
a=1

I =

The Lagrangian L describes two-dimensional harmonic oscillator,
constrained to remain on acircle of radius /1 — a2. This is par-
ticular case of the Neumann integrable system.
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The first constraint gives the Hamiltonian corresponding to L
2
H~ 3 [7‘3 + <8A0TglpRaw)2w21r2J = (r/2)% — (ab)?,
a=1

while the remaining two constraints are satisfied identically.
Second embedding

Zp = 2,Re™™, Z1=0, W,=4l,Rr. (o).

Now the membrane Lagrangian £ is given by

(41,R)* 2 4
= [(SAOTQJPR) 3 (Brraum — Boredimy)
4 4
— Y wiri4 (5/2)2} + Ag (Z r — 1) .
a=1 a=1

Here we have quadratic potential, but in the general case, the
kinetic term is not of the type we are searching for. To fix the
problem, we set

ry=r1(01), re=r79(01), wWs=tws=w,
r3(o9) = asin(boy + ¢), r4(0o2) = acos(boy +c¢), a < 1.
This leads to the Lagrangian (prime is used for d/do)
(4l,R)* 2 0 2 n 2,2
5 E, (8X\'Tol,Rab)”r? — wir?]
2
+ As|Tri-(1-d)
a=1

L =

3

which is already of the Neumann type. The corresponding Hamil-
tonian is given by the first constraint,

H ~ é (8XTuL,Rab)’ 72 + ] = (x/2)2 ~ (o)

The other two constraints are satisfied identically.
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2.2 MEMBRANES AND THE NEUMANN-ROSOCHATIUS
SYSTEM

Third embedding
Zo =2ARe™, Zy=0, Wy= 4lpR7“a(7')ei[“’ai"i+aa<7')],

It leads to the following membrane Lagrangian

£ = (1§P];)2 [
) 4)\0
4

2
- (SADTQZ;DR> Z (walwa = wa2wb1)2rgrl% o (/{’/2)2

a<b=1

5> (72 + raa?)

a=1

4
+ AS(Z’I‘Z—1>.
a=1

The equations of motion for the variables o, (7) can be easily in-
tegrated once and the result is

blr) =

T =

’ ra(r)’

where C,, are arbitrary integration constants. Substituting this
back into £, one receives an effective Lagrangian for the four real

coordinates 7,(7)

_ LR [L (o Ca
L= (&
9 4
— <8/\0T2lpR) ijl(walwbg—wagwbl)2r2r§—(/<a/2)2
, a<o=

4
n Ag(zrg—l).
a=1

To get potential terms ~ r2 instead of ~ 7272, we use once again

the choice made for the first embedding. In addition, we put




C3 = Cy = 0. All this reduces the membrane Lagrangian to
(after neglecting the constant terms)

4,
( 4:? z[g (8A°T3l, Raw)” whyr? — =2
a=1

As Z?‘Z—(l—az)}>
=]

which describes Neumann-Rosochatius integrable system.
The constraints are

9 2
H~ S {f,z(zz +< SA\OT] Raw) w4+ f } - (k/2)% = (ab)?,
a=1 a

02

L

li

I_—I

2

_|_

2
21 we1Ca =0, Gp =0.
a=
Forth embedding
Zo=2,Re*™, Z1 =0, W,=4l,Rry(o;)e'Weraaloil]

for which the membrane Lagrangian reduces to

4
£ = -UbRY {(8>\°TZ’R,> > [(B1ralory — BaraOimy)?
4N <b=1

+ (017 Oty — c’igfraalozb) frb + (0104051 — 82%8177))27*(2

+ (O1aaOscry — 82%(91%)27‘27‘2]

4
+ X [(8)\0T2lp7?,>2 (O1ru000, — (927‘a(910za)2 — wfl] r
a=1
4
+ (/6/2)2} + Ag (Z 7‘2 — 1) :
a=1
If we restrict ourselves to the case as for the second embedding and

a; = ai(oy), a9 = ay(0oy), as,aq = constants,

we obtain

e
L = -—(42’1? [(8)\0T2lp7?,ab>2 > (ri2 +r2ay)

a=1
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— Z wir? + (5/2)% — (aw)?| .

After integrating the equations of motion for o, once and replacing
the solution into the Lagrangian, one arrives at

2 9
(42’3) 3 [(SAOTgl Rab)” 2 — w2
a=1

2
= (SAOTQE ’Rab)2 Co } Ag [i ri—(1—a?)].
a=1

L =

The above Lagrangian represents particular case of the Neumann-

Rosochatius integrable system.
The constraints for the case under consideration are given by

2C

T2

H ~ Z: {(SAOTZszab>2rf+w§r§+ (8X°Tyl,Rab)

= (k/2)° = (aw)?,
2
> waCa = 07 G02 =9.
a=1
Fifth embedding
(connected to the spiky strings and giant magnons)
Zy = 2L,Re™", 7y =0,
W, = 4L, Rrq(€,n)e" iwaT+Ha(§, n)]
£ =ao1+ P, n=~09+ 9T,

where o, B, 7y, § are constants. For this ansatz, the membrane
Lagrangian takes the form (0 = 0/0¢, 0, = 0/0n)

41,R)? 4
L = ;gpf?- {(8/\0T21p7€a’y>2' ij [(Ggraanrb — a,?raaérb)?
s\ a<b=1
(agraamu{, — a,?’l“aag,ub)%"g + (a&uaan'rb — 3nﬂa357“b)27°3

- -

(a@uaan,ub - 377%35%)27“27“2]
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4 2
+ aZ=:1 [(8/\0Tglp7?,a7) (OeraOntta — OnTaO¢tta)*
4
- (/Baﬁ,ua =+ 5877ua -+ Wa)z] rczz - 21 (/Baﬁra + (58777”@)2

£ (5/27) + Ag (i 2 _ 1) .

a=1
Now, we choose to consider the particular case

ry=1r1(€), ro=1e(§), wi=Fxwy=w,
rs =13(n) = asin(bn + ¢), r4=r4(n) = acos(bn + ¢),
pr = pa(§), p2=pa(§), w3, ps = constants,

and receive (prime is used for d/d¢)

£ = RIS ey

T4\ a=1 i
Pwa >2_ A? 2 2

40
2 2\,.2
+ (A - /8 )ra (:u’; o A2 — ,82 A2 _ lagwarra

+ (8/2) = d*(W* + b252)} + Ag [é rZ— (1 —a?

3

where

A’ = (8\°Tyl,Rabary)” .
A single time integration of the equations of motion for p, following
from the above Lagrangian gives
Substituting this solution back into £, one obtains the following
effective Lagrangian for the coordinates r4(£)

(41,R)? 22: 1 A 2r2]
AN\O o= A2 — /32 T,C2Z A2 182wa a|

2
- ns[Ea-0-
a=1

L = (A% — ¥ —




Let us write down the constraints for the present case. To achieve
more close correspondence with the string on AdSs x S°, we want
the third one to be satisfied identically. To this end, since Gy ~
(ab)?v8, we set § = 0, i.e. n = yoq. Then, the first two constraints
give

¥ e A? 2,2

w,T

A2 32 2 +A2—ﬁ2 a’a

H~ s [<A2—62>r23+
a=1

s /2 = (),

aX; weCo + [(&/2)2 — (aw)Q] = 0.

This Lagrangian in full analogy with the string considerations
corresponds to particular case of the m-dimensional Neumann-
Rosochatius integrable system.

2.3 ENERGY AND ANGULAR MOMENTA

The energy E and the angular momenta J, can be computed
by using the equalities

oL oL
= [do=— J,=[d* _
E=-[doo, /daa(ao%)
Then, for all ansatzes we used, the energy is given by
K
E= 23(7rzp7z)2ﬁ. (2.1)

For. the first embedding, J, = 0 for a = 1,2, 3,4, so the only
nontrivial ‘conserved quantity is the membrane energy.
Forlthe second embedding, one obtains -

J, = 23(lp7z)2%/d20r§, a=1,234
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We will consider the cases a = 1,2 and a = 3, 4 separately. Ac-
cording to our ansatz, 712 = r12(01), which leads to

Jo = w(4,R)? /dolr (1), a=1,2.

Combining these two equahtles with the expression for the energy
and taking into account the constraint

2
Y ri—(1-a*) =0,
a=1
one arrives at the energy-charge relation
B L (h,h)
Kk 4(1—a?) \w1  wo)’

As usual, we have linear dependence E(Ji, Jz) before taking the
semiclassical limit.
Let us turn to the case a = 3,4. Now we have

2
J3 = 7r(4l R)Qci\% " doysin®(boy + ¢),
2
Jy = £m(4l, R)Qaj\% " dog cos?(boy + ¢).

By using the periodicity conditions
ro(0;) = ro(o; + 2m),

which imply b = 41, £2, ..., one obtains

2wa2

A0
In order to reproduce the string case, we can set w = 0, and thus
J3 = J, =0,

For %ae third embedding, the angular momenta a-z given by

J—25(7rl7€)2§0, a=12 Js=Js=0.

J3 :I:J4 = (47Tl R)
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This leads to the energy-charge relation

E_L(h.2)
,K‘,'_8 Cl 02 -

For the forth membrane embedding, the expressions for the con-
served charges and the relation between them are the same as for
the second membrane embedding.

Finally, for the fifth membrane embedding, J3 = Jy = 0 for
w = 0. The other two angular momenta are

(4, R)?

— 2, ) o8 =
J, = ,\Oa(A2_52)/d§ (BCa + A%wer?), a=1,2.
Rewriting the energy as
L 4n(l,R)*k
B=—a /4
we obtain the energy-charge relation
4 2 C,1 F J,
A*(1 — a? _l=_=y
Az—ﬁz[ ( a)+ﬁa§1wa K aglw(Z’

in full analogy with the string case. Namely, for strings on AdSs X
S5 the result in conformal gauge is

(s ) Dot

a? — (32 T W) K

Remark wUR

It may seems that the membrane configurations considered here
are chosen randomly. However, they correspond exactly to all
string embeddings in the R x S° subspace of AdSs x S° solution
of type IIB string theory, which are known to lead the Neumann
and Neumann-Rosochatius dynamical systems.
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3 SU(2) SPIN CHAIN FROM MEMBRANE

One of the predictions of AdS/CFT duality is that the string
theory on AdSs x S° should be dual to N’ = 4 SYM theory in four
dimensions. The spectrum of the string states and of the operators
in SYM should be the same. The first checks of this conjecture
beyond the supergrla\'/ity approximation revealed that there exist
string configurations, which in the semiclassical limit are related
to the anomalous dimensions of certain gauge invariant operators
in the planar SYM. On the field theory side, it was found that the
corresponding dilatation operator is connected to the Hamiltonian
of integrable Heisenberg spin chain. On the other hand, it was
established that there is agreement at the level of actions between
the continuous limit of the SU(2) spin chain arising in N' = 4
SYM theory and a certain limit of the string action in AdSs x S°
background. Shortly after, it was shown that such equivalence also
holds for the SU(3) and SL(2) cases.

'The question

Is it possible to reproduce this type of string/spin chain cor-
respondence from membranes on eleven dimensional curved back-
grounds?

The answer

YES, at least for the case of M2-branes on AdSy x S7.

HOW?
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3.1 STRINGS ON AdSs x S°

It is known that the ferromagnetic integrable SU(3) spin chain pro-
vides the one-loop anomalous dimension of single trace operators
involving the three complex:scalars of N/ = 4 SYM. The nonlin-
ear sigma-model, describing the continuum limit of the SU(3) spin
chain, corresponds to strings moving with large angular momen-
tum on the five-sphere in AdSs x 5.

In order to have more close analogy with the membrane case
considered in the next section, we will reproduce the relevant string
action in the framework of diagonal worldsheet gauge. In this
gauge, the Polyakov action and constraints are given by

Ss= [d¢Lsg= [ d%ﬁ
Goo + (22°T)" G = 0,
Gor =0,

[Goo — (2A°T)" G,

where
Gmn = gMNamXManXNa

is the induced metric and A is Lagrange multiplier. The commonly
used conformal gauge corresponds to 2A\°7" = 1.
|
We choose to embed the string in AdSs x S° as follows

Zy = Rrs(§m)ei¢3(€m),
s=(0,1,2), n'rrs+1=0, n"°=(-1,1,1),
W, = Rri(§m)ei“’"(€m), o
' i=(1,2,3), &rirj—1 =0

where ¢, and ; are the isometric coordinates on which the metric
of AdSs and S° respectively does not depend.
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Here, we are interested in the following particular case of the
above embedding

Zo=Re™. Z,=7,=0,
which implies
ro=1, 11=13=0;, ¢9=t=kr, K= const.

For this ansatz, G, reduces to

3
> (amm@nn + rf@mgaianw) =& .

=1

Gmn = R’ [

We now introduce new coordinates according to the rule

(¢1,02,03) = (KT + a4+ @, KT+ a — @, KT + o+ @)

and take the hmlt Kk — 00, 0g — 0, K0y - finite. The result is
(t = kT)

S = [drdoLsc

2
- R o/ dtdo [0+ (1} = r3)du + riod]

_ AO(TR [dt da{z (Byr)*

47“ r’ r? — 12 2
v oo+ 4G e - o] |

S, o
+ —/dtda/\s (Z Ty — 1) .
K- i=1
The momentum P, conjugated to « sh2uld be identified with the
sotal angular momentum of the string
TRk
)0
15
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Then the coefficients in the action become
R% J XN(TR?> A
2X0 27’ K 4]’
where we have used the relation TR? = v/)\ A/27 between the string

tension 7" and the 't Hooft coupling A.
If we parameterize the two-sphere in the following way

r1=cosycosf, ry=sintcostl, r3=sindb,

the string action reduces to
S = % ] dtdo [6‘ta + cos? 6 cos(2¢) 0 + sin® 6’6@]

— o [ dtdo {(2,6) + cos* 0 [(0,)* + sin®(2) Y]

+ 5 oin(26) foos(20)00 — D5

This is the string action corresponding to the thermodynamic limit
of SU(3) spin chain after the identification J = L is made, where
L is the length of the chain. The particular case of SU(2) spin
chain corresponds to 73 = 0 or 8 = 0 in the above actions.

In order to make connection with the membrane case, let us fix
r2 = ¢2 and take the limit ¢ — 0. Neglecting the higher order
terms, one obtains

Rk

S = Sy /drdo [Bocx + (F — r2) o]
2
— XN(TR)* [ drdo { 3 (alm)2
a=1

(2 = (12— 2] (o))
+ / drdoAg LXZ ro—(1—e )} :

16




According to the constraint in the above action, the coordinates
71, T2 Must lie on a circle with radius (1 — 2)%/2. To satisfy this
constraint identically, we choose

ry=(1—e")2costp, rp=(1—e*)"?sinep,

and receive (o = (1 — £2)a)

S/(1—¢?) = g—;g [ dtdo [0pb + cos(2¢) 0]
0 2
_ MTR] [ dtdo |(8,%)° + sin®(29)(8s0)?]

K

The right hand side coincides with the string action corresponding
to the thermodynamic limit of the SU(2) spin chain action.

3.2 MEMBRANES ON AdS; x S7
- For membranes we will use our initial embedding and fix
Zy = 20,Re™",  Z; =0,
which implies
ro=1 r =0, ¢g=t=«kT
Let us now introduce new coordinates by setting

(1, P2, P3, Pa)

(K +a+ KT—FCY -
= |7 o - - y
2 5 7y

and take the limit K — 00, 0y — 0, K0y - anite. In this limit, we
obtain the following expression for the membrane Lagrangian

. K 9’
T+a+¢,§7'+a—q>>
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L = (800z -+ Z vkéopk)
_ )\OTQ( R)! { > (Bradars — Boridirs)’
a<b=1

+ XX /Mc(al?“aazpk — ByraO1p01)*

a=1 k=1

4 2
- X (alra > VkOapr — Oty Z Vkalpk)

a=

+ X pkn(O1pr02pn — DoprO1pn)?
3 2
— > Uk (61pk > UnOapn — Oapk Z Vnalpn) }
4
+ Ag X 7‘2 — 1) ;
a=1
where

(N17,’~L27/~L3) (Tl +T27T§7ri)
(1, 10,13) = (rf — 7‘%,7‘%, —rf),

(o1, 2, P3) = (19, 0, B).

Now, we are ready to face our main problem: how to reduce this
Lagrangian to the one corresponding to the thermodynamic limit
of spin chain, without shrinking the membrane to string? We
propose the following solution of this task:

a=a(r,oy), r=r(r,01), T2="T,01),
ry = 13(T, 09) = asinlboy + ¢(7)],
ry = 14(T, 02) = acoslboy + ¢(T)),

o =(r,01), a,b, ¢, ¢ = constants, a® < 1.
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These restrictions lead to

(21,R)?
£=

— \(abTy)*(4l,R)* { 5 (Bura)’

g=1
+ [F +13) = (1 = 3)?] (B100)°)
. 2
Yri—(l—-a )} ;
a=1
The above membrane Lagrangian is fully analogous to the string

Lagrangian, obtained after fixing 75 to €2 — 0. Proceeding as in
the string case, we introduce the parametrization

ry= (1= a2)1/2 cosy, ro=(1- a2)1/23in P,

the new variable &

K [Ooaﬂ + (r? — 'rg)@ogo]

+ Ag

a=(1-ada,

and take the limit a®> — 0. Thus, we receive

2
L/(1—a? = <2l’/’\702) K [Op& + cos(21)p]

N (abTp)2(4,R)* [(01)* + sin®(20) (B1p)?]

i
As for the membrane action corresponding to the above Lagrangian,
it can be represented in the form

Sy = %/dtda [0:& + cos(29)) 0,

A 2 .2 2
— = [ ddo [0 +sin*(29) 0up)7].

where J is the angular momentum conjugated to &, ¢ = k7 and
A = 25[7%(1 — a®)abT2 (I, R)®.

Obviously, this action corresponds to the thermodynamic limit of
SU(2) integrable spin chain.
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CONCLUSION

THERE SHOULD EXIST

COMMON INTEGRABLE SECTORS
IN

N =4 SYM IN FOUR DIMENSIONS

AND
IN
THE THREE DIMENSIONAL
CONFORMAL FIELD THEORY
DUAL TO MEMBRANES ON AdS, x S7,
ACCORDING TO THE MALDACENA CONJECTURE !

20





