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MAIN IDEA:

General Relativity emerges from Quantum Mechanics with many d.o.f.

GR = lim QM

N—oo

(just like Thermodynamics emerges from Classical Mechanics with many d.o.f.)

OUTLINE:

» [. SPATIAL METRIC from QUANTUM INFORMATION

» define statistical ensembles using information as constraint
» derive a spatially covariant description of quantum information

» II. SPACE-TIME METRIC from QUANTUM COMPUTATION

» define a dual theory description of computational complexities
» derive a space-time covariant description of quantum comp.

» III. GRAVITY from NON-EQUILIBRIUM THERMODYNAMICS

» define thermodynamic variables in the limit of local equilibrium
» derive an equation for a non-equilibrium entropy production
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WAVE FUNCTION FOR QUBITS, QUTRITS AND QUDITS

» Consider a vector in Hilbert space with preferred t.p. factorization

b 2P D

)= > v X =3 v @ IX)

where X' € {0, 1} for qubits, X' € {0, 1,2} for qutrits, etc.
» Then components 1»*’s define a wave-function representation of )
> For qubits it is useful to think of ¢* as a function on D dim. lattice

» For qutrits the periodicity of the lattice is 3 (or in general k for qudits).

> In all cases it is convenient to replace the discrete X' with continuous x/,
differences A with differentiations 9;, sums > with integrals /[, etc.
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STATISTICAL DEPENDENCE OR ENTANGLEMENT

» Question: What is a good measure of entanglement of variables i and j?

> Related Question: What is a good measure of statistical dependence
between i and j described by distribution P(¥) = ¢* (¥)¢(¥)?

» For statistically dependent random variables we know that
P(X) # P(x")P(x%)...P(x") 1)

or

log(P(%)) # log(P(x")) + log(P(x*)) + ... + log(P(x")).
» Then if we expand the left hand side around a global maxima
" N PR i
log(P(%)) ~ log(P(7)) — 5 (x' — ¥)S5(¥' —y) + .. @
then a good measure of statistical dependence is
62

—2 IO log(P(X)) s ©)
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FISHER INFORMATION MATRIX

» More generally the Hessian matrix (which is a local quantity)
2

%i(3) = ~25 55 10g(P(3) @

allows us to approximate the distribution as a sum of Gaussians
17/ ) ) )
_ = 1 _ 1 .. - ] _
x Em exp < 5 (x ym) 35 (§m) (x Vm)) @)

» To obtain a measure of statistical dependence between i’s and j’s qubits
(or subsystems) the quantity must be summed (or integrated) over
different values with perhaps different weights. One useful choice is

/de P ’] = _7\/\dN P lax] log(P(f))

where the factor of 1/4 is introduced for future convenience.

» It can be shown that A; is the so-called Fisher information matrix
obtained from shifts of coordinates ¥.
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FUBINI-STUDY METRIC

» For periodic/vanishing boundary conditions the matrix reduces to
O+/P(X) 0+/P(X
Aij = /de 9VP[E) OyP() 6)
oxt oxi
» Then one can try to define information matrix
N OlY(X)] 9y (%)|
4= / ' oxt oxi @

but it does not measure well certain quantum entanglements.

» A better object is a straightforward generalization, i.e.

V() 0v(%)

which is closely related to the so-called Fubini-Study metric.

> We will refer to A;; (for both statistical and quantum systems) as
information matrix.
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INFOTON FIELD OR UNNORMALIZED WAVE FUNCTION

> Consider a dual field ¢(X) (we shall call infoton) in the
sample/configuration space defined (for now) as

(@) o B(@) ©)
and then the information matrix is
) N 9" (X) Op(X)
Aj x /d x F R (10)

» Next step is to define distributions over |¢)) and so one can think of this
as “2d quantization”, i.e. prob. distribution over prob. amplitudes.

> More precisely, we shall construct statistical ensembles P[] that would
define probabilities of pure states

Plly)] = / DeD P (1)

» So we are now dealing with mixed states, but instead of density
matrices we will work with statistical ensembles described by P[¢].
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STATISTICAL ENSEMBLE OVER WAVE FUNCTIONS

» What we really want is machinery to define distributions over
“microscopic” quantum states subject to “macroscopic” constraints.

» For example, we might want to define a statistical ensemble over
infoton ¢ such that the (expected) information matrix is

(Ay) = Ay (12)
for a given Hermitian matrix A,-]-.
> Statistical ensembles are usually defined using partition functions

2= [ DDy e (Sl (13)

» If the theory is local then the (Euclidean) action S is given by an integral
over a local function £ of fields and its derivatives, e.g.

stel= [d (1200050 1 @e(m) ) 14)

where the values of ¢ do not depend on ¥ and the “mass-squared”
constant A must be chosen so that the infoton field ¢ (which is
proportional to wave-functions ) is on average normalized.
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INFORMATION TENSOR

» For more general ensembles (e.g. over sums of Gaussians) g;j can
depend on coordinates X and thus to play the role of a metric tensor.

> To make the expression covariant we will also add +/|g| to the volume
integral and replace partial derivatives with covariant derivatives, i.e.

s= [@x [l (@ @OVe@ + 2D @e@) 09
» Then, we can define a covariant information tensor as
Aij(X) = Vie" () Vjp(X). (16)
and a covariant probability scalar
N(F) = " (@)e(3). (17)

» Note that both A;(¥) and N (¥) are local quantities in configuration
space.
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STRESS TENSOR

» These two quantities can be used to express the stress tensor
Tj=Vip Vi +8i (gklvkgo*Vmo + )\ap*ap) (18)
=2A3) + &ij (gklAkl + /\N) (19)

where A(,.) = 1 (Auw + Au).

» Then for a given expected information tensor A and probability
density NV, the macroscopic parameters g;;(¥) and A(¥) are to be chosen
such that

N)y=N (20)
and

(Ty) = 2A3) + i (gkl./ikz + )\./\7) . (21)

» Note that the corresponding free energy depends on only
“macroscopic” parameters g;;(¥) and A(¥) (as it should), i.e.

Flgy N = ~log(2lgy. A) = —1og ([ D" exp (Sl ) )



METRIC FROM INFORMATION SPACE-TIME FROM COMPUTATION GRAVITY FROM THERMODYNAMICS

00000000 @®000000 000000
:

ACTION-COMPLEXITY CONJECTURE

» Once again, consider a quantum system of D qubits.

> All states are points on 2° dim. unit sphere separated by distance O(1)
if you were allowed to move along geodesics.

» Now imagine that you are only allowed to move in O(D?) orthogonal
directions out of O(2P).

» More precisely, at any point you are allowed to only apply O(D) of one-
qubit gates or O(D?) of two- qubit gates.

» This is like playing a very high-dimensional maze with many walls and
very few pathways.

» Question: What is the shortest distance (also known as computational
complexity) connecting an arbitrary pair of points on the unit sphere?

> Action-complexity conjecture: There exist a dual field theory whose action
equals to computational complexity of the shortest quantum circuit connecting
any pair of states,

[CU1a), ) = Sl | (22)

where o is a collective notation for all degrees of freedom.
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DUAL THEORIES

» Consider dual theories with d.o.f. represented by infoton field, i.e.

T dX (¢
o ) = [ ar (0, 250 ). @3)
0
» We set initial /final conditions

i) = Y vinlX) o > 9™ (0)]X) (24)
[out) = Y vaulX) x> @M (T)X),
X X

and demand that the (yet to be discovered) dual theory satisfies the
following symmetries/constrains:
» States remain (approximately) normalized, i.e.

D ex(e(H) =1 (25)

» Theory is invariant under permutations of bits, i.e. interactions
depend only on Hamming distance /(I, ) between strings of bits I
and ], e.g. h(0,7) =3,h(2,6) = 1.
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DUAL LAGRANGIAN

» Then the leading terms of the Lagrangian can be written as

Llpx, ¢x) =Y ox@ + XY ox@* + > f((X,Y))pxe" + ... (26)
X X

X,Y

where f(h(X, Y)) is some function of Hamming distance h(X, Y).
» And we arrive at a path integral expression

[Pout) =0 (T)|X) ; -
ou zDgp*d2D<p glfoTdt(a«pxwx-‘-kww)(*—fxwxv’y)

Z(ou), [tia) = /

[%in) =X (0)|X)
where the Einstein summation convention is assumed.
» Note that:

» ¥ =f(h(X,Y)) in computational basis and to transform to other
basis it must be treated as a rank (1, 1) tensor under U (2°).

» Roughly speaking, we expect the function f () to quickly vanish
for h > 2, i.e. penalizing more than two g-bit gates.

» It will be convenient to denote the three relevant constants as
B =£(0),v=f(1) and § = f(2) (in addition to a defined above).
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LATTICE FIELD THEORY

The path integral can also be written as a quantum field theory path integral
on D dimensional torus with only 2" lattice points

Then in a continuum limit the path integral would be given by

2o b)) = [ DD exp (i [t [ ExE(o0.0,000)) @2

where tildes denote spacetime quantities and y labels D + 1 dimentions.
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LAGRANGIAN DENSITY
> After some math we arrive at Klein-Gordon theory

L(p(%), 0up(X) = 3" 0up™ (¥)0uip() — m’o* (¥)p(3) (28)

where the “mass’-squared’

m = — (5 + Dy + wé) [Pt (29)
and the inverse “metric” is
goo N (30)
&= S GrO-nrT G1)
= %511—’3, (32)

wherei,j € {1,...,D}and i # .
» For the path integral to be finite we need the mass squared to be
positive and all but one eigenvalues of the metric to be negative, e.g.

D(D-1)
2

a > 0; v >0 6>—l; B < —Dy—

D 0.
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LocAL COMPUTATIONS

» More generally the infoton field theories defined by Lagrangian
L(o(F), up(T) = 8" (D) 0ue” @00 (X) — A@)@" @D)0(¥)  (33)

can give a dual description to the theories of computation of qudits

» Computations in each hypercube are described by one/two qubit gates
but these computations share each other’s memory on boundaries.

» The qubit computers associated with each hypercube run separately,
but exchange information and thus the results of computations.
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INFORMATION-COMPUTATION TENSOR

» Now that we have a fully covariant action we can look at a covariant
generalization of the information tensor, i.e.

Ay =V Ve (34)
» The tensor A,,, is related to the the energy momentum tensor
Ty = _ZA(W) + 3w (gaﬂAaB) (35)

which implies that it should satisfy the following equation

y 1.
v (A(;w) - EAgW’) =0 (36)

» Space-space components, i.e. ij, provide a good measure of
informational dependence between (k-local and x-local) subsystems.

» Space-time component, i.e. 0i, measures the amount that a given qubit i
is contributing to the computations (zero if V¢ or Vo vanishes)

» Thus it is useful to think of 00 as a “density of computations” and of 0i
as a “flux of computations”, which together with ij form a generally
covariant information-computation tensor A, (defined for a network
of parallel computers or on a D dimensional dual space-time).
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EMERGENT GRAVITY
» Let us go back to “spatial” partition function
2= [ DD e (-Slel) 37)
described by the action with only spatial covariance
=[x\l (Vi DT + M@ @e) G
» The corresponding free energy can be expanded as

.F[gij,)\,h] = —thg(Z[gij,)\7ﬁ])% (39)

/dDX\/E (gij <Ai]'> + A <N>) -S.

» If we turn on a random, but unitary dynamics of wave functions then
the infoton field should also evolve accordingly.

Q

» But if we want to keep the form of the ensemble to remain the same,
then the macroscopic parameters g;;(¥) and A(¥) must evolve as well.

» And if so, can one describe the emergent dynamics of g;;(¥) and A(¥)
using dynamical equations, e.g. Einstein equations, corrections?
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THERMODYNAMIC VARIABLES

» We define (local) thermodynamic variables

information tensor a; = (Ajy)
metric tensor gij = gif
particle number scalar n = (V)
chemical potential scalar m = A
S
entropy scalar s = Tax ]
free energy scalar | = (gij a; + mn) -5 (40)

» Equation (40) together with the First Law of thermodynamics
0 = mdn+ gijdaij —ds (41)
gives us the Gibbs-Duhem Equation

df = ndm + a;dg”. (42)
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ONSAGER TENSOR
» Non-equilibrium entropy production (which is to be extremized)
St = [ VR (Lo - 5 m@ ) @
» By following the standard prescription we expand entropy production
5 = 03" (44)

where the generalized forces are taken to be

0das

Gabn = 50 (45)
and fluxes are expanded to the linear order in generalized forces
Juaﬂ Quv b wégw’w (46)
and thus 1
E% =gl Wégaﬁyng'y&v- (47)

where £* 875 i the Onsager tensor.
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ONSAGER RECIPROCITY RELATIONS

» Onsager relations force us to only consider Onsager tensors that are
symmetric under exchange (p, o, 8) > (v,7,9), i.e.

oHY aB s _ oV Ba 6y (48)

» To illustrate the procedure, let us first consider a tensor

1

ony aBf s _ 5 (gavg/%gu“f + gavgﬁvgw _ gavgﬁégm/) (49)
K

for which the flux can be rewritten as

a 1 a é
J* B _ Eg ‘/gﬁ F‘L’y5 (50)

where I'* 5 are Christoffel symbols and « is some constant.

» If we inset it back into the entropy functional we get

1 1 v @ (7
[l = [ @ el (e + T 0%0) 6D

> Note quite what one needs for GR to emerge.
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GENERAL RELATIVITY

» The overall space of Onsager tensors is pretty large, but it turns out that
a very simple choice leads to general relativity, i.e.

vV« 1 [e374 «@ v « v «@ v
L* Bs _ @ (g gﬁégu“/Jrg 796 g‘“sfg 79669” —9g ﬁg“ﬂsgu )

» It has a lot more symmetries and as a result of these symmetries we are
led to a fully covariant theory of general relativity

il 1 T (o a
/dD_HX |g‘£m: ;/dD-Hx |g|gﬂ (F v(p,al +F/By[‘u‘]‘_‘ a]B)

» By varying the full action with respect to metric (what is equivalent to
minimization of entropy production) we arrive at the Einstein equations

1
Ruw — Emgw +Agu =k <TW> (52)

where the Ricci tensor is

Ry =2 (Fau[u,al + Fﬁu[uraaw) (53)

» Of course, this result is expected to break down far away from
equilibrium (dark matter?) What about inflation and dark energy?
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SUMMARY

» 1. SPATIAL METRIC from QUANTUM INFORMATION
» defined statistical ensembles using information as constraint
» derived a spatially covariant description of quantum information
» II. SPACE-TIME METRIC from QUANTUM COMPUTATION
» defined a dual theory description of computational complexities
» derived a space-time covariant description of quantum comp.
» III. GRAVITY from NON-EQUILIBRIUM THERMODYNAMICS

» defined thermodynamic variables in the limit of local equilibrium
» derived an equation for a non-equilibrium entropy production
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