Dark Matter with genuine spin-2 fields

Forget Dark Energy, let's modify Gravity for Dark Matter!

Federico Urban

CEICO

Institute of Physics Czech Academy of Sciences Prague

SEENET-MTP Workshop BW2018 Niš – Serbia

June 11th, 2018

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

What is bigravity?

What is bigravity?

II A new spin-2 field

What is bigravity?

- A new spin-2 field
- III Spin-2 Dark Matter

- What is bigravity?
- A new spin-2 field
- III Spin-2 Dark Matter III
 - IV Pheno: heavy IV

What is bigravity?
A new spin-2 field
Spin-2 Dark Matter
V Pheno: heavy
V Pheno: light
V

What is bigravity?

- A new spin-2 field
- III Spin-2 Dark Matter III
 - IV Pheno: heavy IV
 - V Pheno: light V

Babichev, Marzola, Raidal, Schmidt-May, FU, Veermäe, von Strauss PRD, JCAP (2017)

Marzola, Raidal, FU PRD (2018)

López Nacir, FU arXiv 18xx.soon; Marzo, Marzola, FU arXiv 18not.so.soon

$$S = \int \mathrm{d}^4 x \left[\sqrt{|g|} m_g^2 R(g) + \sqrt{|f|} m_f^2 R(f) - 2m^4 \sqrt{|g|} V(g, f; \beta_n) \right]$$

- 1. R(g) is GR for the metric $g_{\mu\nu}$, with strength m_g
- 2. R(f) is GR for the metric $f_{\mu\nu}$, with strength $m_f \equiv \alpha m_g$
- 3. The interaction potential is V(g, f) and it depends on 5 parameters β_n
- 4. This action contains no ghosts! It took about 100 yrs to get it right

The ghost-free coupling to matter breaks the symmetry:

$$S_m = \int \mathrm{d}^4 x \sqrt{|g|} \, \mathcal{L}_\mathrm{m}(g, \Phi)$$

What's in this theory?

Expand around proportional backgrounds $f_{\mu\nu} = c \, g_{\mu\nu}$ (for technical reasons)

$$\mathcal{S}^{(2)} = \int \mathrm{d}^4 x \sqrt{|\bar{g}|} \left[\mathcal{L}^{(2)}_{\mathrm{GR}}(\delta G) + \mathcal{L}^{(2)}_{\mathrm{FP}}(\delta M)
ight]$$

 $cdots \mathcal{L}_{\mathrm{GR}}$ is the (linearised) GR for δG

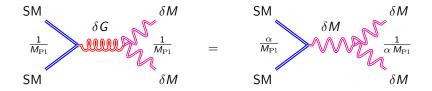
* $\mathcal{L}_{\rm FP}$ is the Fierz-Pauli spin-2 field δM with $m_{\rm FP} \sim \sqrt{\beta}_n M_{\rm Pl}$

* These are mixtures of the interaction eigenstates with parameter lpha

$$\delta g_{\mu\nu} \simeq \left(\delta G_{\mu\nu} - \alpha \delta M_{\mu\nu}\right), \quad \delta f_{\mu\nu} \simeq \left(\delta G_{\mu\nu} + \alpha^{-1} \delta M_{\mu\nu}\right)$$

MATTER

$$S_m \sim \int \mathrm{d}^4 x \left(\delta G_{\mu
u} - lpha \delta M_{\mu
u}
ight) T^{\mu
u}$$

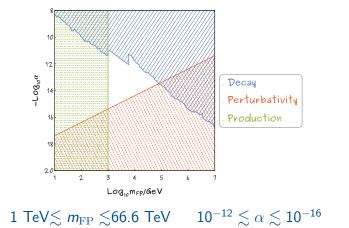

How does δM gravitate?

-	δG^3	$\delta G^2 \delta M$		$\delta G \delta M^2$		δM ³	3
	1		0	1	_	1/lpha	!
δG^4	$\delta G^3 \delta M$		$\delta G^2 \delta M^2$		$\delta G \delta M^3$		δM^4
1	0		1		1/lpha		$1/lpha^2$

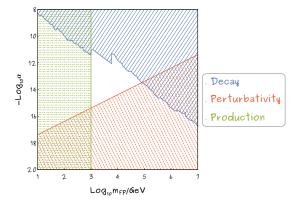
- i. All δG vertices have the same strength as in GR
- ii. There is no decay of δM into any number of δG
- iii. $\delta G \delta M^2$ is 1: the response to δG is the same as SM matter
- iv. δM self-interactions are enhanced compared to GR

Phenomenology 1: heavy

※ The massive spin-2 can be produced via freeze-in:

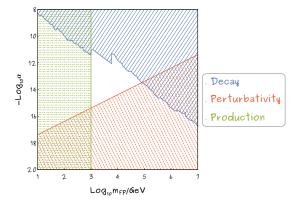


 $* \delta M$ decays universally into all SM particles (but not massless gravitons):


$$\Gamma(\delta M \to XX) \simeq \alpha^2 m_{\rm FP}^3 / M_{\rm Pl}^2$$

 \circledast The froze-in DM should have the right abundance and not decay too fast: this can be arranged (see next slide).

Heavier and darker


Heavier and darker

$1 \text{ TeV} \lesssim m_{ m FP} \lesssim 66.6 \text{ TeV}$ $10^{-12} \lesssim lpha \lesssim 10^{-16}$

This range can be extended up to the $\alpha \simeq 1$ region with multiple spin-2 fields González Albornoz, Schmidt-May, von Strauss (2017)

Heavier and darker

$1 \text{ TeV} \lesssim m_{ m FP} \lesssim$ 66.6 TeV $10^{-12} \lesssim lpha \lesssim 10^{-16}$

This range can be extended down to the MeV to GeV region with dark freeze-out via 3-to-2 interactions Chu, Garcia-Cely (2018)

- ${\mathfrak A}$. Fuzzy DM is a very (very) light DM field, usually with $m_{
 m FP}\ll 1$ eV
- 3. All we need is a potential dominated by the mass term This is the typical situation for axions and ALP models
- **C**. Late Universe dynamics: $\ddot{M}_{ij} + 3H\dot{M}_{ij} + m_{\rm FP}^2M_{ij} = 0$
 - a This means $M_{ij} \sim a(t)^{-3/2} \cos(m_{\rm FP}t)$ b This means $T_{00} \sim a^{-3}$, and the rest is stuff $\times \cos(m_{\rm FP}t)$ c This means, averaging over Hubble, $T^{\mu}{}_{\nu} = (\varrho, 0, 0, 0)$ with $\varrho = a^{-3}$ b This means Dark Matter!
- $m{a}$. The working mass range is roughly $10^{-23}{
 m eV}\lesssim m_{
 m FP}\lesssim {\cal O}(0.1){
 m eV}$

Testing this scenario

- 1. Fifth force experiments: $\alpha < 10^{-2}$ for $m_{\rm FP} \lesssim \mathcal{O}(0.1) {\rm eV}$
- 2. Lab tests: the electric charge oscillates
 - A. Atomic clocks experiments
 - IB. Atomic spectroscopy
 - C. Resonant mass detectors
 - ID. But: $E_i E_j \pm B_i B_j$ and $E_j B_j \pm B_i E_j$ vs $E^2 B^2$ and $E \cdot B$
- 3. Secular change in binary systems orbital parameters

II : DM generates an oscillating environment for the binary II.II : $F^i = R^i_{0j0} x^j$ II.II.II : When oscillations and binary resound we have secular variations II.W : $\dot{P} \simeq 10^{-17} (P/100\text{d})^2 \text{ F(Ne)}$ W : In principle detectable with next generation timing data

& Bigravity is a consistent 4d extension of GR with more spin-2 fields

* Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\lesssim m_{\rm FP} \lesssim 66.6$ TeV β Kind of heavy: 1 MeV $\lesssim m_{\rm FP} \lesssim 1$ GeV γ Light: 10⁻²³ eV $\lesssim m_{\rm FP} \lesssim 1$ eV

& Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\lesssim m_{\rm FP} \lesssim 66.6$ TeV β Kind of heavy: 1 MeV $\lesssim m_{\rm FP} \lesssim 1$ GeV γ Light: 10⁻²³ eV $\lesssim m_{\rm FP} \lesssim 1$ eV

A Heavy I: production is via freeze-in (leaking from a hot thermal bath)

* Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\leq m_{\rm FP} \leq 66.6$ TeV β Kind of heavy: 1 MeV $\leq m_{\rm FP} \leq 1$ GeV γ Light: 10⁻²³ eV $\leq m_{\rm FP} \leq 1$ eV

A Heavy I: production is via freeze-in (leaking from a hot thermal bath)

🙆 Heavy II: the peculiar decay signals can pin down (falsify) this model

* Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\leq m_{\rm FP} \leq 66.6$ TeV β Kind of heavy: 1 MeV $\leq m_{\rm FP} \leq 1$ GeV γ Light: 10⁻²³ eV $\leq m_{\rm FP} \leq 1$ eV

A Heavy I: production is via freeze-in (leaking from a hot thermal bath)

Tight I: it is a spin-2 ALP and it is generated via misalignment

* Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\leq m_{\rm FP} \leq 66.6$ TeV β Kind of heavy: 1 MeV $\leq m_{\rm FP} \leq 1$ GeV γ Light: 10⁻²³ eV $\leq m_{\rm FP} \leq 1$ eV

😹 Heavy I: production is via freeze-in (leaking from a hot thermal bath)

🙆 Heavy II: the peculiar decay signals can pin down (falsify) this model

Tight I: it is a spin-2 ALP and it is generated via misalignment

Light II: there is a wealth of lab experimental tests for this model, plus a neat method via binary pulsars

* Bigravity is a consistent 4d extension of GR with more spin-2 fields

The new spin-2 are ideal DM candidates α Heavy: 1 TeV $\leq m_{\rm FP} \leq 66.6$ TeV β Kind of heavy: 1 MeV $\leq m_{\rm FP} \leq 1$ GeV γ Light: 10⁻²³ eV $\leq m_{\rm FP} \leq 1$ eV

😹 Heavy I: production is via freeze-in (leaking from a hot thermal bath)

🙆 Heavy II: the peculiar decay signals can pin down (falsify) this model

Tight I: it is a spin-2 ALP and it is generated via misalignment

Light II: there is a wealth of lab experimental tests for this model, plus a neat method via binary pulsars

Thank You, and...

GRAVITY

@ Prague

Summer School September 10-14, 2018 gravity-prague.fzu.cz LOC:

Michal Malinsky Joris Raeymaekers Lorenzo Reverberi Ippocratis Saltas Ignacy Sawicki Martin Schnabl Constantinos Skordis Federico Urban Alexander Vikman

Lecturers:

Geoffrey Compère	Infrared Structure of Gravity
Matthias Gaberdiel	Higher-Spin Field Theories
Zohar Komargodski	Conformal Field Theory
Samaya N. Nissanke	Gravitational Waves
Antonio Padilla	The Cosmological Constant
Leonardo Senatore	Effective Field Theory of Large Scale Structure
Alexander Vilenkin	Inflation and the Multiverse

(CC

۰

N.