# Galactic rotation curves vs. ultra-light dark matter: Implications of the soliton — host halo relation

# Sergey Sibiryakov

with Nitsan Bar, Diego Blas, Kfir Blum, arXiv: 1805.00122







BW2018, Niš, Serbia























$$\mathcal{L} = \frac{1}{2} \left( (\partial_{\mu} \Phi)^2 - m^2 \Phi^2 \right)$$

e.o.m. in expanding Universe:



 $\ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$ 

$$\mathcal{L} = \frac{1}{2} \left( (\partial_{\mu} \Phi)^2 - m^2 \Phi^2 \right)$$

e.o.m. in expanding Universe:



 $\ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$ 

• H > m  $\blacklozenge$   $\Phi = const$ 

$$\mathcal{L} = \frac{1}{2} \left( (\partial_{\mu} \Phi)^2 - m^2 \Phi^2 \right)$$

e.o.m. in expanding Universe:

 $\ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$ 

- H > m  $\blacklozenge$   $\Phi = const$
- H < m  $\blacktriangleright$   $\Phi = \Phi_0 \cos(mt)$ density:  $\rho = \frac{m^2 \Phi_0^2}{2}$ pressure:  $p = -\rho \cos(2mt)$



 $\checkmark \quad \langle p_{\Phi} \rangle = 0$ 

$$\mathcal{L} = \frac{1}{2} \left( (\partial_{\mu} \Phi)^2 - m^2 \Phi^2 \right)$$

e.o.m. in expanding Universe:

 $\ddot{\Phi} + 3H\dot{\Phi} + m^2\Phi = 0$ 

- H > m  $\blacklozenge$   $\Phi = const$
- H < m  $\blacktriangleright$   $\Phi = \Phi_0 \cos(mt)$ density:  $\rho = \frac{m^2 \Phi_0^2}{2}$ pressure:  $p = -\rho \cos(2mt)$   $\blacktriangleright$   $\langle p_{\Phi} \rangle = 0$

# behaves as DM on times longer than $m^{-1}$



Theoretical pedigree: pseudo-Goldstone boson

e.g. global U(1)  $\longrightarrow$  periodic variable with period  $2\pi f$ 

Theoretical pedigree: pseudo-Goldstone boson

e.g. global U(1)  $\blacktriangleright$  periodic variable with period  $2\pi f$ 

non-zero mass can be generated by non-perturbative

effects  $V(\Phi) = m^2 f^2 (1 - \cos(\Phi/f))$  $m \propto \exp(-S_{inst})$ examples: QCD axion, string theory ALP's, relaxion,

quasi-dilaton, ....

Theoretical pedigree: pseudo-Goldstone boson

e.g. global U(1)  $\blacktriangleright$  periodic variable with period  $2\pi f$ 

non-zero mass can be generated by non-perturbative

effects  $V(\Phi) = m^2 f^2 (1 - \cos(\Phi/f))$  $m \propto \exp(-S_{inst})$ 

examples: QCD axion, string theory ALP's, relaxion, quasi-dilaton, ....

• Density fraction:

 $\Phi \sim f$  after inflation

$$\blacktriangleright \quad \Omega_{\Phi} \simeq 0.05 \times \left(\frac{f}{10^{17} \text{GeV}}\right)^2 \times \left(\frac{m}{10^{-22} \text{eV}}\right)^{1/2}$$

•  $m \gtrsim 10^{-23} {\rm eV}$  from CMB and LSS : otherwise too much suppression of structure

Ly  $\alpha$  forest:  $m \gtrsim 10^{-21} \text{eV}$  based on complicated modelling Kobayashi et al. (2017)

•  $m \gtrsim 10^{-23} {\rm eV}$  from CMB and LSS : otherwise too much suppression of structure

Ly  $\alpha$  forest:  $m \gtrsim 10^{-21} \text{eV}$  based on complicated modelling Kobayashi et al. (2017)

•  $m \sim 10^{-22} \text{eV}$  affects structures on small scales, could address the problems of particle CDM (?) Hu, Barkana, Gruzinov (2000)

Hui et al. (2016)

•  $m \gtrsim 10^{-23} {\rm eV}$  from CMB and LSS : otherwise too much suppression of structure

Ly  $\alpha$  forest:  $m \gtrsim 10^{-21} {\rm eV}$  based on complicated modelling Kobayashi et al. (2017)

- $m \sim 10^{-22} \text{eV}$  affects structures on small scales, could address the problems of particle CDM (?) Hu, Barkana, Gruzinov (2000) Hui et al. (2016)
- $m \sim 10^{-14} \div 10^{-10} \text{eV}$  leads to black-hole superradiance: probed by black-hole spins, gravitational waves can probably be extended down to  $m \sim 10^{-18} \text{eV}$ Arvanitaki, Dubovsky (2011) Arvanitaki et al. (2016)

•  $m \gtrsim 10^{-23} {\rm eV}$  from CMB and LSS : otherwise too much suppression of structure

Ly  $\alpha$  forest:  $m \gtrsim 10^{-21} {\rm eV}$  based on complicated modelling Kobayashi et al. (2017)

- $m \sim 10^{-22} \text{eV}$  affects structures on small scales, could address the problems of particle CDM (?) Hu, Barkana, Gruzinov (2000) Hui et al. (2016)
- $m \sim 10^{-14} \div 10^{-10} \text{eV}$  leads to black-hole superradiance: probed by black-hole spins, gravitational waves can probably be extended down to  $m \sim 10^{-18} \text{eV}$ Arvanitaki, Dubovsky (2011) Arvanitaki et al. (2016)

focus of this talk:  $m \sim 10^{-22} \div 10^{-18} \text{eV}$ 

NB. Can be axion-like particle, but *not* QCD axion

# Challenges to particle CDM at sub-kpc scales ?

- cores vs. cusps
- missing satellites
- too big to fail



from Oh et al., arXiv: 1502.01281

perhaps are explained by baryonic physics

# **Dynamics of ULDM in the Newtonian limit**



leads to suppression of fluctuations at short scale --- "quantum pressure"

# Probing ULDM with galactic rotation curves

# **ULDM** in the halo

Schive, Chiueh, Broadhurst, arXiv: 1406.6586





Schive, Chiueh, Boardhurst, arXiv:1407.7762

#### **Properties of the soliton**

$$\psi(x,t) = \left(\frac{mM_{pl}}{\sqrt{4\pi}}\right)e^{-i\gamma mt}\chi(x)$$





 $\chi_{\lambda}(r) = \lambda^2 \chi_1(\lambda r)$  $x_{c\lambda} = \lambda^{-1} x_{c1}$ 

$$M_{\lambda} = \lambda M_1$$

$$\gamma_{\lambda} = \lambda^2 \gamma$$
$$\rho_{c\lambda} = \lambda^4 \rho_{c1}$$

#### Soliton - host halo relation

Schive, Chiueh, Boardhurst, arXiv:1407.7762

$$M \approx 1.4 \times 10^9 \left(\frac{m}{10^{-22} \,\mathrm{eV}}\right)^{-1} \left(\frac{M_h}{10^{12} \,\mathrm{M}_{\odot}}\right)^{\frac{1}{3}} \mathrm{M}_{\odot}$$



### **Exercise for NFW halo**



# predictions

#### VS

#### data





# predictions





#### VS

### data



# predictions





VS

data





#### PARC data ontd



Conclusion:

ULDM with 
$$m \simeq (10^{-22} \div 10^{-21}) \text{eV}$$

is disfavoured by rotation curves of disk galaxies



cannot play a role in solving small-scale problems of LambdaCDM

- Baryonic effects
  - stars tend to increase the soliton mass (*J.H.H.Chan et al.* (2017)); their potential can be taken into account self-consistently
  - baryonic feedback unlikely to destroy the soliton:

 $M_{
m sol} > 10 imes M_{
m baryons}$  in the inner part

- Baryonic effects
  - stars tend to increase the soliton mass (*J.H.H.Chan et al.* (2017)); their potential can be taken into account self-consistently
  - baryonic feedback unlikely to destroy the soliton:  $M_{
    m sol}>10 imes M_{
    m baryons}$  in the inner part
- Self-interaction and direct interaction with baryons
  - negligible for minimal models

- Baryonic effects
  - stars tend to increase the soliton mass (*J.H.H.Chan et al.* (2017)); their potential can be taken into account self-consistently
  - baryonic feedback unlikely to destroy the soliton:  $M_{
    m sol} > 10 \times M_{
    m baryons}$  in the inner part
- Self-interaction and direct interaction with baryons
  - negligible for minimal models
- Accretion on supermassive black hole
  - negligible for  $m \lesssim 10^{-21} {\rm eV}$  and  $M_{\rm SMBH} < 10^{10} M_{\odot}$ , but quickly increases with the mass of the field

# **Future: probing higher masses**

• Inner dynamics of the Milky Way





# **Summary**

ULDM is a simple (perhaps, the simplest) option for dark matter with interesting phenomenology. Theoretically motivated

# Summary

ULDM is a simple (perhaps, the simplest) option for dark matter with interesting phenomenology. Theoretically motivated

If soliton — host halo relation holds for real halos,  $m \lesssim 10^{-21} \text{eV} \text{ is disfavoured by galactic rotation curves}$ (also Ly\$\alpha\$)

# Summary

- ULDM is a simple (perhaps, the simplest) option for dark matter with interesting phenomenology. Theoretically motivated
- If soliton host halo relation holds for real halos,  $m \lesssim 10^{-21} \text{eV} \text{ is disfavoured by galactic rotation curves}$ (also Ly\$\alpha\$)

# Outlook

- Further understanding of structure formation with ULDM (baryonic effects, supermassive black hole)
- More probes: Inner Milky Way, 21 cm, pulsar timing (see *talk by Diego Blas*)