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Challenges to particle CDM at sub-kpc scales ?
14 Oh et al.

Fig. 5.— Upper-left panel: The (DM only) rotation curves (small dots) of the 21 LITTLE THINGS (including 3 THINGS galaxies)
for which Spitzer 3.6µm image is available. These are all scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic
slope of the rotation curve is dlogV/dlogR = 0.3 as described in Hayashi & Navarro (2006). The ‘⇥’ symbol represents the median values of
the rotation curves in each 0.1R/R0.3 bin. The error bars show the 1� scatter. Lower-left panel: The scaled rotation curves of the seven
THINGS, and the two simulated dwarf galaxies (DG1 and DG2 in Governato et al. 2010) which are overplotted to the median values of
the LITTLE THINGS rotation curves. The grey solid and black solid lines with small dots indicate the CDM NFW dark matter rotation
curves with V200 which is > 90 km s�1 and < 90 km s�1, respectively. Right panels: The corresponding dark matter density profiles
derived using the scaled rotation curves in the left panels. The grey (V200 > 90 km s�1) and black solid lines with small dots (V200 < 90
km s�1) represent the CDM NFW models with the inner density slope ↵⇠�1.0. See Section 4 for more details.

profiles. This is much like the THINGS dwarf galaxies,
and the simulated dwarfs (DG1 and DG2) with baryonic
feedback processes as shown in the lower-right panel of
Fig. 5.
We also measure the inner density slopes ↵ of the DM

density profiles to quantify the cuspiness of the central
DM distribution. This yields a more quantitative com-
parison between the observations and simulations. As
shown in the figures in the Appendix (e.g., panel (f) of

Fig. A.3), we perform a least squares fit (dotted lines) to
the inner data points (grey dots) within a ‘break radius’.
As described in de Blok & Bosma (2002; see also Oh
et al. 2011b), we determine a break radius of a DM den-
sity profile where the slope changes most rapidly in the
inner region of the profile. Following de Blok & Bosma
(2002), we adopt the mean di↵erence between the slopes
which are measured including the first data point out-
side the break-radius and excluding the data point at the
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- cores vs. cusps

- missing satellites

- too big to fail

from Oh et al., arXiv:1502.01281

perhaps are explained by baryonic physics



Dynamics of ULDM in the Newtonian limit 
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Probing ULDM with 
galactic rotation curves 



ULDM in the halo

Figure 2: A slice of density field of ψDM simulation on various scales at zzz=== 000...111. This scaled sequence
(each of thickness 60 pc) shows how quantum interference patterns can be clearly seen everywhere from
the large-scale filaments, tangential fringes near the virial boundaries, to the granular structure inside the
haloes. Distinct solitonic cores with radius ∼ 0.3− 1.6 kpc are found within each collapsed halo. The
density shown here spans over nine orders of magnitude, from 10−1 to 108 (normalized to the cosmic mean
density). The color map scales logarithmically, with cyan corresponding to density ! 10.

graphic processing unit acceleration, improving per-
formance by almost two orders of magnitude21 (see
Supplementary Section 1 for details).

Fig. 1 demonstrates that despite the completely
different calculations employed, the pattern of fil-
aments and voids generated by a conventional N-
body particle ΛCDM simulation is remarkably in-
distinguishable from the wavelike ΛψDM for the
same linear power spectrum (see Supplementary Fig.
S2). Here Λ represents the cosmological constant.
This agreement is desirable given the success of stan-
dard ΛCDM in describing the statistics of large scale
structure. To examine the wave nature that distin-
guishes ψDM from CDM on small scales, we res-
imulate with a very high maximum resolution of
60 pc for a 2 Mpc comoving box, so that the dens-
est objects formed of " 300 pc size are well re-
solved with ∼ 103 grids. A slice through this box
is shown in Fig. 2, revealing fine interference fringes
defining long filaments, with tangential fringes near

the boundaries of virialized objects, where the de
Broglie wavelengths depend on the local velocity of
matter. An unexpected feature of our ψDM simula-
tions is the generation of prominent dense coherent
standing waves of dark matter in the center of every
gravitational bound object, forming a flat core with
a sharp boundary (Figs. 2 and 3). These dark matter
cores grow as material is accreted and are surrounded
by virialized haloes of material with fine-scale, large-
amplitude cellular interference, which continuously
fluctuates in density and velocity generating quan-
tum and turbulent pressure support against gravity.

The central density profiles of all our collapsed
cores fit well with the stable soliton solution of the
Schrödinger-Poisson equation, as shown in Fig. 3
(see also Supplementary Section 2 and Fig. S3). On
the other hand, except for the lightest halo which
has just formed and is not yet virialized, the outer
profiles of other haloes possess a steepening loga-
rithmic slope, similar to the Navarro-Frenk-White

3

Schive, Chiueh, 
Broadhurst, 
arXiv: 1406.6586

3

FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M⊙. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M⊙ are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

Schive, Chiueh, Boardhurst,  
arXiv:1407.7762

soliton



Properties of the soliton 
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  
satisfies the Schroedinger-Poisson (SP) equations [32]

i@t = � 1

2m
r2 + m� , (3)

r2� = 4⇡G| |2. (4)

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

 (x, t) =

✓
mMplp

4⇡

◆
e�i�mt�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�2 (6)

⇡ 4.1 ⇥ 1014

⇣ m

10�22 eV

⌘
2

�2 M�/pc3.

The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@2

r (r�) = 2r (� � �)�, (7)

@2

r (r�) = r�2. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�

1

(r), with �
1

. A numerical calculation gives [4, 5, 8]

�
1

⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �
1

soliton is

M
1
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drr2�2
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(r) (10)

⇡ 2.79 ⇥ 1012

⇣ m

10�22 eV

⌘�1

M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣ m

10�22 eV

⌘�1

pc. (11)
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FIG. 1. Profile of the “standard” �

1

soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�

1

(r), �
1

(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by

��(r) = �2�
1

(�r), (12)

��(r) = �2�
1

(�r), (13)

�� = �2�
1

, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M
1

, (15)

xc� = ��1xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6 ⇥ 10�4

⇣ m

10�22 eV

⌘✓ M�

109 M�

◆
. (17)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27 ⇥ 108

⇣ m

10�22 eV

⌘�2

kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �2|�

1

| ⌧ 1, consistent with the non-relativistic
approximation.

The energy in an arbitrary non-relativistic ULDM con-
figuration is

E =

Z
d3x

 
|r |2
2m2

+
� | |2

2

!
= Ek + Ep, (19)
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Soliton - host halo relation
5

where Mh is the virial mass of the host halo. As noted
in [6–8], Eqs. (29-30) are an excellent numerical fit for a
soliton ��. The mass of this soliton is

M ⇡ 1.4 ⇥ 109

⇣ m

10�22 eV

⌘�1

✓
Mh

1012 M�

◆ 1
3

M�, (31)

so its � parameter is

� ⇡ 4.9 ⇥ 10�4

✓
Mh

1012 M�

◆ 1
3

. (32)

Note that Eq. (31) is applicable only as long as the halo
exceeds a minimal mass,

Mh,min

⇠ 5.2 ⇥ 107

✓
m

10�22eV

◆�3/2

M� . (33)

Smaller mass halos would be dominated by the soliton.
Ref. [7] showed that Eq. (31) is consistent with the

relation,

Mc ⇡ ↵

✓ |Eh|
Mh

◆ 1
2 M2

pl

m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh

are the virial mass and energy of the simulated halo; and
↵ = 1 provides a good fit to the data. Ref. [7] gave
a heuristic argument, pointing out that Eq. (34) iden-
tifies the soliton scale radius (chosen as the core radius
xc in [7]) with the inverse velocity dispersion in the host
halo, in qualitative agreement with a wave-like “uncer-
tainty principle”.

However, there is another way to express Eq. (34). The
core mass of a �� soliton is related to its total mass via
Mc� ⇡ 0.236M�. Thus, using Eq. (25) we have an an-

alytic relation Mc� ⇡ 1.02
⇣

|E�|
M�

⌘ 1
2 M2

pl

m . This allows us

to rephrase the empirical Eq. (34) by a more intuitive
(though equally empirical) expression:

E

M

����
soliton

⇡ E

M

����
halo

. (35)

Therefore, the soliton–host halo relation in the simula-
tions of Ref. [6, 7] can be summarised by the statement
that the energy per unit mass of the soliton matches the
energy per unit mass of the host halo.

B. Soliton vs. host halo: the simulations of
Ref. [13]

The simulations of Ref. [13] pointed to an empirical
scaling relation between the soliton mass M and the total
energy of the ULDM distribution in the simulation box,
Eh,

M

(M2

pl/m)
⇡ 2.6

�����
Eh

(M2

pl/m)

�����

1
3

. (36)

However, this is just Eq. (23), if we replace the halo en-
ergy Eh by the energy of the soliton. Because the central
density profile found in [13] was a �� soliton, to a good
approximation, it must be the case that the total energy
of the halo in the simulations of [13] was dominated by
the central soliton contribution. This situation is un-
likely to hold for realistic cosmological host halos with
Mh significantly above Mh,min

.
How could this have happened? The initial conditions

in the simulations of [13] were a collection of N solitons,
which were then allowed to merge. It appears that these
initial conditions were constructed such that one initial
state soliton – the soliton of initially largest mass – grew
to absorb the entire energy of the system. Di↵erently
from Ref. [7] that considered initial conditions of N iden-
tical initial solitons, the simulations of [13] initiated their
N solitons with a random flat distribution in soliton ra-
dius. Such distribution would be skewed towards large
soliton energy because E� / x�3

c� . Considering the ini-
tial condition set-up as explained in [13], we find that
the most massive initial state soliton typically needed to
grow in mass by only a factor of 1.5-2, to absorb the
entire energy of the halo.

Note that energy dominance of the central soliton over
the host halo, implied by Eq. (36), is not the same, of
course, as equating the energy per unit mass of the soliton
and the halo, implied by Eq. (35). Halos in [6, 7] attained
masses up to two orders of magnitude larger than the
central soliton mass, meaning their halo energy was two
orders of magnitude larger than the energy of the soliton.

C. Comments

As far as we can currently determine, Eq. (35) may
indeed reflect a realistic soliton–host halo relation for
large enough cosmological halos. In the following sec-
tions, we take a leap of faith and assume that the sim-
ulations of [6, 7] produced the correct scaling relation.
We stress that Eq. (35) is an empirical result, and was
only tested in [6, 7] for host halo masses ranging from
⇠ 108 M� to ⇠ 1011 M�. Our key numerical analysis
will concern systems in this range of mass.

We defer a theoretical study of the origin of Eq. (35)
to future work. Here we give only a few comments. We
stress that the discussion in the rest of this section does
not a↵ect any of our results.

For a soliton, E/M = �/3. On the other hand, �m can
be associated with the chemical potential of ULDM par-
ticles in the soliton (see e.g. [34] and references therein).
This may appear to hint that Eq. (35) corresponds to
thermodynamic equilibrium between the ULDM parti-
cles in the host halo and in the soliton. However, there
is some evidence to the contrary from simulations.

Ref. [29] simulated ULDM, adding collisionless point
particles (“stars”). The stars aggregated dynamically in
a cuspy profile, resulting in a more massive soliton com-
pared to the pure ULDM simulations [6, 7] with a given
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tions, we take a leap of faith and assume that the sim-
ulations of [6, 7] produced the correct scaling relation.
We stress that Eq. (35) is an empirical result, and was
only tested in [6, 7] for host halo masses ranging from
⇠ 108 M� to ⇠ 1011 M�. Our key numerical analysis
will concern systems in this range of mass.

We defer a theoretical study of the origin of Eq. (35)
to future work. Here we give only a few comments. We
stress that the discussion in the rest of this section does
not a↵ect any of our results.

For a soliton, E/M = �/3. On the other hand, �m can
be associated with the chemical potential of ULDM par-
ticles in the soliton (see e.g. [34] and references therein).
This may appear to hint that Eq. (35) corresponds to
thermodynamic equilibrium between the ULDM parti-
cles in the host halo and in the soliton. However, there
is some evidence to the contrary from simulations.

Ref. [29] simulated ULDM, adding collisionless point
particles (“stars”). The stars aggregated dynamically in
a cuspy profile, resulting in a more massive soliton com-
pared to the pure ULDM simulations [6, 7] with a given
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3
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3

. (32)
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M� . (33)

Smaller mass halos would be dominated by the soliton.
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✓ |Eh|
Mh

◆ 1
2 M2
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m
, (34)

where Mc is the core mass (mass within x < xc); Mh, Eh
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2 M2
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Therefore, the soliton–host halo relation in the simula-
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host halo mass. Testing the reversibility of the system,
Ref. [29] adiabatically “turned o↵” the stars after the
initial system virialised. When eliminating the stars, the
soliton+halo system did not relax back to Eq. (35). In-
stead, the excess ULDM mass that was contained in the
soliton in the presence of stars remained captured in the
soliton, and did not return to the host halo. The final
state of the system was not described by Eq. (35): the
soliton ended up containing larger (negative) E/M than
the halo, and larger mass compared with Eq. (31).

IV. SOLITON-HOST HALO RELATION AND
GALACTIC ROTATION CURVES

As we have seen, the soliton–host halo relation found in
the simulations of [6, 7] can be summarised by Eq. (35),
equating the energy per unit mass of the virialised host
halo to that in the soliton component. For a virialised
system, the energy per unit mass maps to kinetic energy
density: in particular, the characteristic circular velocity
(or, up to an O(1) geometrical factor, the velocity dis-
persion) of test particles in the halo and in the soliton
should match. The peak circular velocity of the soli-
ton, given by Eqs. (27-28), occurs deep in the inner part,
x < 1 kpc, of the galaxy; while the peak circular velocity
of an NFW-like halo occurs far out at x ⇠ 2 Rs, with
Rs the NFW characteristic radius, of order 10 kpc for a
MW-like galaxy. Thus, if the scaling derived from the
simulations of [6, 7] is correct, ULDM predicts that the
peak rotation velocity in the outskirts of a halo should
approximately repeat itself in the deep inner region. We
now discuss this result quantitatively.

Consider a halo with an NFW density profile

⇢NFW (x) =
⇢c�c

x
Rs

⇣
1 + x

Rs

⌘
2

, (37)

where

⇢c(z) =
3H2(z)

8⇡G
, �c =

200

3

c3

ln(1 + c) � c
1+c

. (38)

The profile has two parameters: the radius Rs and the
concentration parameter c = R

200

/Rs, where R
200

is the
radius where the average density of the halo equals 200
times the cosmological critical density, roughly indicating
the virial radius of the halo. The gravitational potential
of the halo is

�NFW (x) = �4⇡G⇢c�cR
3

s

x
ln

✓
1 +

x

Rs

◆
. (39)

Near the origin, x ⌧ Rs, �NFW is approximately con-
stant, �NFW (x ⌧ Rs) ⇡ �h, and is related to the mass
of the halo, M

200

= 200⇢c
4⇡
3

c3R3

s, via

�h = �G

0

B@
4⇡�c⇣

ln(1 + c) � c
1+c

⌘
2

1

CA

1
3

⇢
1
3
c M

2
3
200

. (40)

We can estimate the energy per unit mass of the viri-
alised halo by

E

M

����
halo

⇡ ⇡

R R200

0

dxx2⇢NFW (x)�NFW (x)

M
200

. (41)

This gives

E

M

����
halo

⇡ c̃

4
�h, (42)

where

c̃ =
c � ln(1 + c)

(1 + c) ln(1 + c) � c
. (43)

Typical values of the concentration parameter are in the
range c ⇠ 5 ÷ 30 [35]. In this range, c̃ varies between
c̃ ⇠ 0.55 ÷ 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10 ÷ 20 [36].)

Plugging Eq. (42) into the soliton–host halo relation
Eq. (35), the scaling parameter � is fixed as

�0.23 �2 ⇡ E�

M�
⇡ c̃

4
�h, (44)

which implies5

M� ⇡ 2.1
p

�c̃ �h

M2

pl

m

⇡ 2.4 ⇥ 109

⇣ m

10�22 eV

⌘�1

⇥
✓

H(z)

H
0

◆ 1
3
✓

M
200

1012 M�

◆ 1
3

f(c) M�, (45)

with

f(c) = 0.54

vuut
✓

c

1 + c

◆
c � ln(1 + c)

⇣
ln(1 + c) � c

1+c

⌘
2

.

Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M

200

. We do this compar-
ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by

V 2

circ,h(x)

V 2

circ,h(Rs)
=

2(1 + ⇠) ln(1 + ⇠) � 2⇠

⇠(1 + ⇠)(ln(4) � 1)
, ⇠ ⌘ x

Rs
. (46)

5 In the numerical estimates we use H
0

= 70 km/s/Mpc for the
present-day Hubble constant.
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c̃ ⇠ 0.55 ÷ 0.35, respectively. (For reference, fits of the
MW outer rotation curve give c ⇠ 10 ÷ 20 [36].)

Plugging Eq. (42) into the soliton–host halo relation
Eq. (35), the scaling parameter � is fixed as

�0.23 �2 ⇡ E�

M�
⇡ c̃

4
�h, (44)

which implies5

M� ⇡ 2.1
p

�c̃ �h

M2

pl

m

⇡ 2.4 ⇥ 109

⇣ m

10�22 eV

⌘�1

⇥
✓

H(z)

H
0

◆ 1
3
✓

M
200

1012 M�

◆ 1
3

f(c) M�, (45)

with

f(c) = 0.54

vuut
✓

c

1 + c

◆
c � ln(1 + c)

⇣
ln(1 + c) � c

1+c

⌘
2

.

Eq. (45) depends weakly on the NFW concentration pa-
rameter, via the factor f(c) that varies in the range
0.9 ÷ 1.1 for c = 5 ÷ 30. It agrees parametrically with
the simulation result, Eq. (31) (including the redshift de-
pendence, which we have suppressed in Eq. (31)). It also
agrees quantitatively to about 20%; to see this, we need
to account for the slightly di↵erent definition of the halo
mass Mh, used in [7], and our M

200
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ison in App. A.

Consider the rotation velocity curve of an ULDM
galaxy satisfying Eq. (35). The NFW rotation curve is
given by

V 2

circ,h(x)

V 2
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=

2(1 + ⇠) ln(1 + ⇠) � 2⇠

⇠(1 + ⇠)(ln(4) � 1)
, ⇠ ⌘ x

Rs
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5 In the numerical estimates we use H
0

= 70 km/s/Mpc for the
present-day Hubble constant.
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This halo rotation curve peaks at x ⇡ 2.16 Rs with a
peak value

maxV
circ,h ⇡ 1.37 ⇥ 105(��h)

1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of

maxV
circ,� ⇡ 1.51 ⇥ 105

✓
c̃

0.4

◆ 1
2

(��h)
1
2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxV

circ,�.
As anticipated in the beginning of this section, Eq. (35)

predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,

maxV
circ,�

maxV
circ,h

⇡ 1.1

✓
c̃

0.4

◆ 1
2

, (49)

independent of the particle mass m, independent of the
halo mass M

200

, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.
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FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

x
peak,� ⇡ 191

✓
10�22 eV

m

◆✓
maxV

circ,�

200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.
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FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show V

circ

due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V

circ

(x) =
p

G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the
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halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
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M
200

= 1012 M�

c = 25
c = 15

c = 10

V
circ

[km/s]

x [pc]
10 100 1000 104 105 106
50

100

150

200

250
300

c = 25

c = 15

c = 10

V
circ

[km/s]

x [pc]

M
200

= 5 ⇥ 1010 M�

10 100 1000 104 105

25

50

75

100
125
150

FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show V

circ

due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
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tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the

predictions              vs                 data
m = 10�22eV

7

This halo rotation curve peaks at x ⇡ 2.16 Rs with a
peak value

maxV
circ,h ⇡ 1.37 ⇥ 105(��h)

1
2 km/s. (47)

On the other hand, in the inner galaxy x ⌧ Rs, the circu-
lar velocity due to the soliton peaks to a local maximum
of

maxV
circ,� ⇡ 1.51 ⇥ 105

✓
c̃

0.4

◆ 1
2

(��h)
1
2 km/s, (48)

where we used Eq. (44) to fix � and Eq. (28) to relate it
to maxV

circ,�.
As anticipated in the beginning of this section, Eq. (35)

predicts approximately equal peak circular velocities for
the inner soliton component and for the host halo,

maxV
circ,�

maxV
circ,h

⇡ 1.1

✓
c̃

0.4

◆ 1
2

, (49)

independent of the particle mass m, independent of the
halo mass M

200

, and only weakly dependent on the de-
tails of the halo via the factor (c̃/0.4)

1
2 . Eq. (49) is plot-

ted in Fig. 3 as function of the concentration parameter.

5 10 15 20 25 30

1.05

1.10

1.15

1.20

1.25

1.30

c

maxV
circ,�

maxV
circ,h

FIG. 3. Ratio between halo and soliton peak circular veloci-
ties as a function of the halo concentration.

While maxV
circ,� and the approximate equality

Eq. (49) are m-independent, the soliton peak velocity
occurs in an m-dependent location,

x
peak,� ⇡ 191

✓
10�22 eV

m

◆✓
maxV

circ,�

200 km/s

◆�1

pc. (50)

Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the top and

bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
height.

M
200

= 1012 M�

c = 25
c = 15

c = 10

V
circ

[km/s]

x [pc]
10 100 1000 104 105 106
50

100

150

200

250
300

c = 25

c = 15

c = 10

V
circ

[km/s]

x [pc]

M
200

= 5 ⇥ 1010 M�

10 100 1000 104 105

25

50

75

100
125
150

FIG. 4. Rotation curves for the ULDM soliton+halo system,
obtained for a DM-only NFW halo using the soliton–halo re-
lation Eq. (35) with m = 10�22 eV. Solid black, dot-dashed
orange, and dashed blue show V

circ

due to the total soli-
ton+halo system, the soliton only, and the halo only. Results
are shown for NFW concentration parameter c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.
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tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
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soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
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In Fig. 4, to define the rotation velocity for the total
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tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with M
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>
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M�. We do this in order to limit
ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the M

gal

cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.

V
circ

[km/s]

0 1 2 3 4 5 6
0

20

40

60

80
UGC 1281

m = 10�22 eV

x [kpc]

V
circ

[km/s]

0 1 2 3 4 5 6
0

20

40

60

80
UGC 1281

m = 10�21 eV

x [kpc]

FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV
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kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1

kpc
are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV
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kpc halo criterion. This criterion
is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at
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m/10�22 eV
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kpc guarantees that such confusion
is avoided.

Our first pass on the data includes only galaxies for
which the predicted soliton is resolved, namely, x

peak,�

from Eq. (50), with maxV
circ,� = maxV

circ,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio
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. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. A total of 46 galaxies pass the resolved soliton
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Fig. 4 shows the circular velocity curve for the NFW
halo+soliton system, following from Eq. (35), with
ULDM particle mass m = 10�22 eV. The solid black, dot-
dashed orange, and dashed blue lines show the contribu-
tions to V

circ

due to the total system, the soliton only, and
the halo only. Results are shown for three di↵erent val-
ues of the NFW concentration parameter, c = 10, 15, 25,
with M
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bottom panels, respectively. For larger m > 10�22 eV,
the soliton bump in the rotation curve would shift to
smaller x according to Eq. (50), but would maintain its
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In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V
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(x) =
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G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
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are shown for NFW concentration parameter c = 10, 15, 25,
with M

200

= 1012 M� and 5 ⇥ 1010 M� on the upper and
lower panels, respectively.

In Fig. 4, to define the rotation velocity for the total
system, we set the ULDM mass density for the total sys-
tem to be ⇢(x) = max {⇢�(x), ⇢NFW (x)}, calculate the
resulting mass profile M(x), and use spherical symme-
try to find V

circ

(x) =
p

G M(x)/x. This prescription for
matching between the soliton and NFW parts is ad-hoc
and only roughly consistent with the simulations of [6, 7].
The true transition region between the NFW part and the
soliton part probably deviates from the pure NFW form.
Ref. [37] considered this transition region and concluded
that the density profile in this region should follow ap-
proximately ⇢ ⇠ x� 5

3 , steeper than the usual inner NFW
form ⇢ ⇠ x�1. This would a↵ect the detailed shape of
the rotation curve in the intermediate region between the
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with M

gal

>

109

�
m/10�22 eV

��3/2

M�. We do this in order to limit
ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the M

gal

cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1

kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1

kpc
are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1

kpc halo criterion. This criterion
is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1

kpc guarantees that such confusion
is avoided.

Our first pass on the data includes only galaxies for
which the predicted soliton is resolved, namely, x

peak,�

from Eq. (50), with maxV
circ,� = maxV

circ,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

V
circ, obs

(x
peak,�)

maxV
circ,h

. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. A total of 46 galaxies pass the resolved soliton
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of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample
includes, in particular, the galaxies shown in Figs. 7-10.

Our analysis is as follows. For each SPARC galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last (highest dis-
tance) data point in the rotation curve, and V the cor-
responding velocity. We keep only galaxies with M

gal

>

109
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m/10�22 eV

��3/2

M�. We do this in order to limit
ourselves to galaxy masses that are comfortably above
the minimal halo mass (33). Our results are not sensi-
tive to the details of this mass cut. Of the 175 galaxies
in [28], 162 pass the M

gal

cut for m = 10�22 eV, and all
175 pass it for m = 10�21 eV.
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Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak ve-
locity, we search for the halo peak velocity restricting

to radial distance x > 3
�
m/10�22 eV

��1

kpc. (Galax-

ies with no data above x = 3
�
m/10�22 eV

��1

kpc
are discarded.) Our results are not sensitive to the

3
�
m/10�22 eV

��1

kpc halo criterion. This criterion
is only meant to make sure, that we are not confus-
ing the halo peak with a soliton peak, which would
bias our analysis. Defining the halo cut anywhere at

& 1
�
m/10�22 eV

��1

kpc guarantees that such confusion
is avoided.

Our first pass on the data includes only galaxies for
which the predicted soliton is resolved, namely, x

peak,�

from Eq. (50), with maxV
circ,� = maxV

circ,h, lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

V
circ, obs

(x
peak,�)

maxV
circ,h

. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. A total of 46 galaxies pass the resolved soliton
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with f
bar2DM

< 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for f

bar2DM

< 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with f

bar2DM

<
1, 0.5, and none for f

bar2DM

< 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts f

bar2DM

<

1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22 ÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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FIG. 12. Same as Fig. 11, including galaxies with unresolved
solitons (see the main text).
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with f
bar2DM

< 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for f

bar2DM

< 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with f

bar2DM

<
1, 0.5, and none for f

bar2DM

< 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
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the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
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1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22 ÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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solitons (see the main text).
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this simple procedure relieves us from the need to fit for
the virial mass or other details of the host halo. All that
is needed is the peak halo rotation velocity, a directly
observable quantity7.

Eq. (49) (represented by the dashed line in Figs. 7-10)
corresponds to the central value of the soliton–host halo
relation. Ref. [6, 7] showed a scatter of about a factor
of two around Eq. (34) between simulated halos. This
translates to a factor of two scatter in the soliton � pa-
rameter (we have illustrated this scatter for a sub-sample
of simulated halos in Fig. 6). In Figs. 7-10 we represent
this scatter by a shaded band, showing the results when
the � parameter inferred from Eq. (49) is changed by a
factor of 2.

It is important to check if scatter between di↵erent
galaxies could explain the discrepancy, with the four
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FIG. 7. Measured rotation curve of UGC 1281 superimposed
on the prediction from Eq. (49) following from the soliton–
host halo relation. The ULDM mass is m = 10�22 eV (upper
panel) and m = 10�21 eV (lower panel). The shaded band
accounts for the intrinsic scatter of the soliton–host halo re-
lation.

7 The rotation curves in Figs. 7-10 do not show a clear peak within
the range of the measurement; this means that our soliton bump,
derived from the maximal velocity seen in the data, underesti-
mates the true predicted soliton and is thus conservative.

galaxies in Figs. 7-10 being accidental outliers. To ad-
dress this question, we analyse the 175 rotation curves
contained in the SPARC data base [28]. This sample in-
cludes, in particular, the galaxies UGC 1281, UGC 4325,
and NGC 100, shown in Figs. 7-10.

Our SPARC analysis is as follows. For each galaxy, we
make a crude estimate of the halo mass contained within
the observed rotation curve profile by M

gal

⇠ RV 2/G,
where R is the radial distance of the last data point
in the rotation curve, and V the corresponding veloc-
ity. We keep only galaxies with 5 ⇥ 1011 M� > M

gal

>

5 ⇥ 108

�
m/10�22 eV

��3/2

M�. We do this in order to
limit ourselves to galaxy masses that are comfortably
above the minimal halo mass (33), and not above the
range simulated in [6, 7]. Our results are not sensitive to
the details of this mass cut.

Next, for each galaxy we determine the observed max-
imal halo rotation velocity maxV

circ,h, and use it to com-
pute the soliton prediction from Eq. (49). To avoid con-
fusion between halo peak velocity and soliton peak veloc-
ity, we search for the halo peak velocity restricting to ra-

dial distance x > 3
�
m/10�22 eV

��1

kpc. Galaxies with

no data above x = 3
�
m/10�22 eV

��1

kpc are discarded.
Our results are not sensitive to this criterion; defining the

halo cut anywhere at & 1
�
m/10�22 eV

��1

kpc guaran-
tees that such confusion is avoided.
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FIG. 8. Same as Fig. 7 for UGC 4325.
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SPARC galaxies come with photometric data, allow-
ing to model the baryonic contribution to the gravita-
tional potential [28]. We use this information to limit
baryonic e↵ects on our analysis, and to explore the sen-
sitivity of our results to baryonic corrections. For each
galaxy, we estimate the baryonic contribution to the ob-
served rotation velocity using the mass models of [28]
with 3.6µm mass-to-light ratio ⌥⇤ = 0.5 M�/L�. Set-

ting V
(bar),2
circ,h + V

(DM),2
circ,h = V

(obs),2
circ,h , we calculate the ratio

f
bar2DM

= V
(bar)

circ,h/V
(DM)

circ,h . We present results when cut-
ting on di↵erent values of f

bar2DM

< 1, 0.5, 0.33.
Our first pass on the data includes only galaxies for

which the predicted soliton is resolved, namely, x
peak,�

from Eq. (50), with maxV
circ,� = maxV

(DM)

circ,h , lies within
the rotation curve data. For these galaxies, we compute
from data the ratio

V
circ, obs

(x
peak,�)

maxV
(DM)

circ,h

. (51)

Here, V
circ, obs

(x
peak,�) is the measured velocity at the

expected soliton peak position.
The results of this first pass on the data are shown in

Fig. 11. Red, blue, and green histograms show the result
when imposing f

bar2DM

< 1, 0.5, 0.33, respectively. For
m = 10�22 eV, we find 45, 26, and 5 galaxies that pass
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FIG. 9. Same as Fig. 7 for NGC 1560.

the resolved soliton cut for f
bar2DM

< 1, 0.5, 0.33. For
m = 10�21 eV, only 4 galaxies pass the resolved soliton
cut for f

bar2DM

< 1, and none for f
bar2DM

< 0.5, 0.33.
Including only galaxies with a resolved soliton causes

us to loose many rotation curves with discriminatory
power. For example, UGC 4325 drops out of the anal-
ysis for m = 10�21 eV, though it clearly constrains the
model, as seen from the lower panel of Fig. 8. To over-
come this without complicating the analysis, we perform
a second pass on the data. Here, we allow galaxies with
unresolved soliton, as long as the innermost data point is
located not farther than 3 ⇥ x

peak,�. We need to correct
for the fact that the soliton peak velocity is outside of
the measurement resolution. To do this, we modify our
observable as

V
circ, obs

(x
peak,�)

maxV
(DM)

circ,h

! V
circ, obs

(x
min,data

)

maxV
(DM)

circ,h

⇥
r

x
min,data

x
peak,�

,

(52)

where x
min,data

is the radius of the first data point. This
correction is conservative, because it takes the fall-o↵ of
the soliton gravitational porential at at x > x

peak,� to
be the same as for a point mass. In reality, the potential
decays slower and the soliton-induced velocity decreases
slower. Keeping this caveat in mind, Fig. 12 presents our
results including unresolved solitons. For m = 10�22 eV,
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with f
bar2DM

< 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for f

bar2DM

< 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with f

bar2DM

<
1, 0.5, and none for f

bar2DM

< 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range
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FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts f

bar2DM

<

1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22 ÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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with f
bar2DM

< 1, 0.5, we find 48 and 16 galaxies with
unresolved soliton, that can be added to the sample of
Fig. 11. No galaxy is added for f

bar2DM

< 0.33. For m =
10�21 eV, 16 and 5 galaxies are added with f

bar2DM

<
1, 0.5, and none for f

bar2DM

< 0.33.
In Figs. 11-12, vertical dashed line indicates the

soliton–host halo prediction. The shaded region shows
the range of the prediction, modifying the RHS of
Eq. (49) between 0.5 � 1.5, consistent with the scatter
seen in the simulations.

We conclude that the four galaxies in Figs. 7-10 are not
outliers: they are representative of a systematic discrep-
ancy, that would be di�cult to attribute to the scatter
seen in the simulations. If the soliton-host halo rela-
tion of [6, 7] is correct, then ULDM in the mass range

soliton resolved
m=10-22 eV

0 0.5 1 1.5 2
(velocity at soliton peak)/(max halo velocity)

0

5

10

15

# 
of

 g
al

ax
ie

s

V
circ, obs

(x
peak,�)/maxV

circ,h

m=10-21 eV
soliton resolved

0 0.5 1 1.5 2
(velocity at soliton peak)/(max halo velocity)

0

1

2

3

4

5

# 
of

 g
al

ax
ie

s

V
circ, obs

(x
peak,�)/maxV

circ,h

FIG. 11. Distribution of SPARC galaxies [28] with respect
to the ratio of observed circular velocity at the soliton peak
to the maximal circular velocity of the halo. The vertical
dashed line shows the prediction for the mean implied by the
soliton-host halo relation and the shaded region accounts for
the intrinsic scatter in this relation. The ULDM mass is m =
10�22 eV (upper panel) and m = 10�21 eV (lower panel).
Red, blue, green histograms correspond to the cuts f

bar2DM

<

1, 0.5, 0.33, respectively. Only rotation curves with resolved
solitons are included (see the main text for details).

m ⇠ 10�22 eV to m ⇠ 10�21 eV is in tension with the
data.

We have limited our attention to the range m =
(10�22 ÷ 10�21) eV, for which we believe the results are
clear. We leave a detailed study of the precise exclusion
range to future work. We note that for lower particle
mass, m . 10�23 eV, the soliton contribution extends
over much of the velocity profile of many of the SPARC
galaxies, leaving little room for a host halo. This limit,
where the galaxies are essentially composed of a single
giant soliton, was considered in other works. We do not
pursue it further, one reason being that this range of
small m is in significant tension with Ly-↵ data [18, 19].

For higher particle mass, m & 10�21 eV, the soliton
peak is pushed deep into the inner 100 pc of the rotation
curve. Although high resolution data (e.g. NGC 1560,
Fig. 9) is sensitive to and disfavours this situation, a more
careful analysis would be needed to draw a definitive con-
clusion. Note that in this range of m, ULDM ceases to
o↵er a solution to the small-scale puzzles of ⇤CDM (see,
e.g., review in [12]).
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Conclusion:


ULDM with                                        

is disfavoured by rotation curves of disk galaxies      

m � (10�22 ÷ 10�21)eV

cannot play a role in solving small-scale 
problems of LambdaCDM     
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Caveats:     
• Baryonic effects


- stars tend to increase the soliton mass (J.H.H.Chan et al. 
(2017)); their potential can be taken into account self-
consistently


- baryonic feedback unlikely to destroy the soliton: 

                                         in the inner part     

• Self-interaction and direct interaction with baryons 

- negligible for minimal models     

• Accretion on supermassive black hole 

- negligible for                           and                                    , 


but quickly increases with the mass of the field   

Msol > 10�Mbaryons

m � 10�21eV MSMBH < 1010M�



Future: probing higher masses
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computed holding their mass fixed by Eq. (31), but in-
cluding the e↵ects of baryons as we discuss below. An
NFW profile, fitted in Ref. [36] to r & 10 kpc SDSS data,
is shown in dashed black.
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FIG. 15. Spherically-averaged mass profile in the Milky Way,
vs. ULDM soliton contributions. See text for details.

We stress that the purpose of Fig. 15 is to illustrate the
possible signature of ULDM in the inner MW, and not for
statistical analyses of the MW mass distribution. Mod-
eling the inner MW is a complicated task. The measure-
ment of inner kinematics of the galaxy, below a few kpc,
is subject to large systematic uncertainties due, among
other issues, to the e↵ects of the Galactic bar and spiral
arm structures [51], which impact tangent-point velocity
measurements like those utilised in [52, 53]. Our simpli-
fied derivation of the spherically-averaged mass profile in
Fig. 15 combines many tracers with di↵erent systematics,
and accounts for none of these subtleties.

Ref. [54] analysed the MW central gravitational po-
tential using a large set of observational constraints. In
addition to the classical bulge and disc, Ref. [54] found
dynamical evidence for the presence of a mass compo-
nent of ⇠ 2 ⇥ 109 M� extending to ⇠ 250 pc. This mass
component is visible as a mass bump in Fig. 15 (see, e.g.
green data points extracted from [52]). Consistent with
comments in [6, 7], the bump is in tantalising agreement
with the soliton prediction of Eq. (31) for m = 10�22 eV
(blue shaded band).

Unfortunately, there are about a billion stars in there,
too: the bump in the mass profile at r ⇠ 200 pc has been
associated in the literature with the nuclear bulge (NB).
Ref. [55] fitted the NB mass and light by a dense disc of
stars, with mass density ⇢⇤ ⇠ 200 M�/pc3, scale hight
. 45 pc and scale radius ⇠ 230 pc. In all, the NB is
thought to contain (1.4± 0.6)⇥ 109 M� in stars, roughly
enough to match the dynamically inferred mass. Sub-
sequent kinematic detection supporting the stellar mass
and disc-like morphology of this component was given
in [56]. Microlensing analyses [57] lend further support

to the results of [54–56] down to r & 220 pc.
The photometrically-derived NB mass model of [55] is

superimposed as purple line in Fig. 15. We stress that
the photometric derivation is subject to large uncertain-
ties due to the need to correct for very strong extinction
and due to unknown stellar mass-to-light ratios. What
we learn from this photometric mass model, therefore, is
that stars could plausibly account for all of the kinemat-
ically inferred mass in this region.

Assuming that the NB is due to stars, we now use a
toy model of this mass distribution to see its e↵ect on
an ULDM soliton. We replace the disc-like morphology
of the NB in [55] by a spherical model with the same
radially averaged mass. The nominal model, containing
the NB and additional subleading components described
in [55], contains ⇠ 1.7 ⇥ 109 M� in stars inside of r =
300 pc. Adding a SMBH of MBH = 4.3 ⇥ 106 M� [38],
we calculate soliton solutions in this baryonic potential.

Fig. 16 shows the soliton mass as function of the �
parameter, for m = 10�22 eV. Green dashed line shows
the unperturbed M� vs. � relation. Solid, dashed, and
dotted black lines show the relation for the nominal NB
model and for two other models, obtained by scaling the
NB mass density by an over-all factor of 0.5 and 2, re-
spectively. For orientation, shaded blue band shows the
soliton mass predicted by Eq. (31) for a host halo with
mass Mh = (0.8 � 2) ⇥ 1012 M�.
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FIG. 16. Soliton mass vs. � parameter, accounting for the
spherically-averaged gravitational potential due to stars [55].
The ULDM particle mass is m = 10�22 eV. See text for more
details.

For M� & 3 MNB ⇠ 5 ⇥ 109 M�, the NB makes a
negligible impact on the soliton. For larger ratio of the
stellar to ULDM mass, M� . MNB , the NB becomes
important, contracting the soliton profile. For the MW,
this is the parametric region predicted by Eq. (31), im-
plying that the solitons would receive significant distor-
tion. In Fig. 15 we illustrated this e↵ect by presenting,
in shaded bands, the soliton mass profiles computed ac-
counting for the nominal NB model. We observe that
the solitons for m in the range (10�22 ÷ 10�19) eV are
expected to a↵ect the potential at an order unity level.

• Inner dynamics of the Milky Way 
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Summary
ULDM is a simple (perhaps, the simplest) option for dark 
matter with interesting phenomenology. Theoretically 
motivated

Further understanding of structure formation with ULDM 
(baryonic effects, supermassive black hole) 


More probes: Inner Milky Way, 21 cm, pulsar timing (see 
talk by Diego Blas)

If soliton — host halo relation holds for real halos, 

                          is disfavoured by galactic rotation curves 

(also Ly   )�

Outlook

m � 10�21eV


