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The Standard Model

The Standard Model of particle interactions is a very
successful theory.

However, it leaves a number of unanswered questions (Mass
origin, flavor puzzle, charge quantization, a number of
parameters, dark matter, hierarchy problem, gravity...)

Supersymmetry has been introduced to provide a solution to
the gauge hierarchy problem and guarantee stability towards
quantum corrections without fine-tuning. The introduction of
SUSY at a few TeV leads also to coupling unification.

If SUSY were an exact symmetry of the nature every particle
and i1ts superpartener would have degenerate masses.
However, this is not verified experimentally so SUSY must be
broken.



Non-supersymmetric strings

Space-time supersymmetry is not required for consistency in
string theory.

From the early days of the first string revolution it was known
that heterotic strings comprise the SUSY Eg x Eg and SO(32)
models as well as the non-supersymmetric tachyon free
S0(16) x SO(16) theory.

However, non-supersymmetric string phenomenology has not
received much attention until recently.

see e.g.

S. Abel, K. R. Dienes and E. Mavroudi (2015,2017) , J. R. and I. Florakis (2016,2017) , Y.
Sugawara, T. Wada (2016) , A. Lukas, Z. Lalak and E. E. Svanes (2015) , S.G. Nibbelink,
O. Loukas, A. Miitter, E. Parr, P. K. S. Vaudrevange (2017)



SUSY breaking in String Theory

Any scenario of supersymmetry breaking in the context of
string theory has to address some important issues, as

- Resolve My, /Mp hierarchy

- Compatibility with gauge coupling evolution (unification)
- Account for the smallness of the cosmological constant
- Resolve possible instabilities (tachyons)

- Moduli field stabilisation



Coordinate dependent compactifications

A stringy Scherk-Schwartz mechanism involves an extra

dimension X° and a conserved charge Q.
Upon compactification

® (X° +27R) = €% (X°)

S
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we obtain a shifted tower of Kaluza—Klein
states for charged fields, starting at

Q

Momentum states

O(C) = e 3 @, el /R
neZ

see e.g. J. Scherk and ). H. Schwarz (1978,1979) , R. Rohm (1984) , C. Kounnas and
M. Porrati (1988) , S. Ferrara, C. Kounnas, M. Porrati and F. Zwirner (1989) , C. Kounnas
and B. Rostand, (1990)



Coordinate dependent compactifications

Q = Fermion number = leads to different masses for
fermions-bosons (lying in the same supermultiplet) and thus
to spontaneous breaking of supersymmetry.

SUSY breaking related to the compactification radius M ~ %

We are going to consider the implementation of this
mechanism in a class of phenomenologically interesting
SO(10) heterotic string models.



Gravitino mass

We consider compactifications of the six internal dimensions
In three separate two-tori parametrised by the

T, U0 i =123 moduli. For simplicity, we will consider
realising the Scherk-Schwartz mechanism utilising the TV, y()

torus.
At tree level the gravitino receives a

Mass

for a square torus: T =Ry Ry, U =R, /Ry
AlL 7O, UU) moduli remain massless.

At Ry — oo we have m3,, = 0 and the supersymmetry is
restored. 7



One loop potential

The effective potential at one loop, as a function moduli
t; =T, UO is obtained by integrating the string partition
function Z(m, m; t;) over the worldsheet torus ¥;

o

1 d?r

Vone—loop(tl) — 2(27‘(’)4 = Z(T T, tl) 7
where 7 = 7 + I and F Is the
fundamental domain . i 7
For given values of the modulli
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where g, = e=2™2 and g; = e*™'™



One loop moduli potentials
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Typical one-loop potential as a function of the modulus T, = R,

Undesirable features: SUSY breaking at the string scale, huge
cosmological constant, region of tachyon instabilities



One loop potential: Analytic results
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One loop potential: Asymptotic limit R — oo

The asymptotic behaviour of the potential Is

Ng — NEg U3 —/ 27
Vone-loop(R) — _(247T7R4) Z 1 : 6 +0 (e \/2_R)
m1,m2€Z |m’| _I— 2 _I_ Um2|

Ng — Nf
Vone—loop(R) — f( R4 )

where £ 1S a constant and ng, nr stand for the number of
bosonic and fermionic degrees of freedom respectively.

+ exponentially supressed

Super no scale models ng = ng. Cosmological constant is
exponentially small.

C. Kounnas and H. Partouche (2016), T. Coudarchet and H. Partouche (2018)
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A class of models

Consider a big class of semi-realistic Z, x Z, heterotic string
vacua for explicit realisations of the Scherk-Schwarz scenario.
Study chirality, moduli potential and thresholds.

To this end we utilise both the free fermionic formulation and
orbifold formulation. In the former we have full control of the
spectrum in the latter we have explicit moduli dependence.

In the free fermionic formulation we use the model
classification techniques developed in

A. Gregori, C. Kounnas and J. R. (1999)
A. E. Faraggi, C. Kounnas, S. E. M. Nooij and J. R. (2004)
A. E. Faraggi, C. Kounnas and J. R. (2007)

12



The class of SO(10) models

We consider a class of four dimensional N = 1 heterotic
models spontaneously broken to N = 0 via the
Scherk-Schwarz mechanism. At technical level, this class Is
generated by 9 basis vectors in the free fermionic formulation
and 1s parametrised by a set of 36 phases associated with
generalised GSO projections. It comprises 2°C—1/2+1 ~ 10"
(a priori) distinct models.

The Egx Eg gauge symmetry is reduced to
SO(10)xS0O(8)* x U(1)?
We select models using the following criteria

- absence of tachyons
+ SO(10) chirality
- compatibility with Scherk-Schwarz breaking of N =1 SUSY



Class of models: Basis vectors

The free fermions in the light-cone gauge are:
left: wu,x1,...,6’ y1,...,6,w1,...,6

right: )71,...,6 LR 771’2’3 2;1,...,5 q_51,...,8
The class of vacua under consideration is defined by

1,006 A 1Ble,6 =1,...6 =123 T1,....5 T1,...8
51:1:{¢“7X Y y W |y y W y 1] ﬂP 7¢ }

63 _ T1 _ {y12,w12|)—/12,(:)12}

54 — T2 — {y34’w34|)—/34,a)34}

55 — T3 — {y56’w56|)—/56,(:}56}

56 _ b1 — {X347X567y347y56|)_/347)_/56777;1 ..... 5,77,1}
;87 — b2 — {X127X567y127y56|)7127)756777;1 ..... 5,,,72}
/88 =27 = {(Z‘I ..... 4}

69 =7, = {q_55 ..... 8}

and a variable set of 9(9 — 1)/2 + 1 = 37 phases c[7].
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Chirality

Fermion generations, transforming as SO(10) spinorials, arise
. I _

from B,y =S+ byg, | =1,2,3where by, =b'+pT, +qTs,

blg =b°+pTi+qTy, by =x+b"+b°+pT1+qTy, with

p,q € {0,1}, and x =1 +S+Zf’=1 T,-+Eﬁ=1zk.

Number of generations N=73%_,,;x' where

B1
Xpg = —4C S+ b, +p(% —q)Ts. Pra.
x2 = —4C - B%q - pP?
P S+br+(1-q)Ts| P9
x3 = —4C - ng - p>
Pa _S—I-b1—|—(1—(])T1_ Pq >

and

SO O 2 T N



Orbifold Partition function

The one-loop partition function at the generic point reads

1 1 1 1
Z — o o _1 G+b+HG+¢
12524 23 Z 23 Z 23 Z (=)

h1,h2,H G,’?,p H1,H2,H3
g']agz,G b,t,o0 G1,62,G3
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x I[P BT

hi1 artkR+h->1 ark—hi—h->1 3 3
00 R il T P )P R i

Where T = 780 i1 u® = U1 1 iUl are the moduli of the
three two tori, n(7) Is the Dedekind eta function and 9[g](7)
stand for the Jacobi theta functions.

Connection with fermionic formulation
Fermionic point T=sand U = (1+41)/2

Phase ¢ (c[gl']) .



Twisted/shifted lattices

r %3”2 , (Hi,Gj) = (0,0) or (H;, G;) = (h, g)
N2l 1g)(T,U) = § rstit)(T,u) , h=g =0
0 , otherwise
shlft[G |(T,U) = Z (_1)G(m1+n2) q%|PL|2 (—]%|PR|2 |
iy
with
b m2+%—Um1+T(n1+%+Unz),
LU,
b m2+%—Um1+T(n1+%+Un2).
LU,
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Typical partition functions

Some typical expansions of partition functions (fermionic point)

2g; 16q;
Zy = qq ~ \/% + (=312 + 32; + 5607)
+ (4064 + 6“.*4 + 512g; — 416q§) Var
-+ (12288 -+ 163284 -+ 103§80 — 12320q; — 256q; + 792q§’) Qr + ...
Z(e) = zqcf _ 33% + (8 +224q; + 56qi2) n (1984 + 20?8 —1024q; — 832q§) Jar
+ (30720 4+ 19280 | 92100 4 17604, + 537642 + 79263 ) qs + ...
q; o
2g; 16 6912
Zio) = q‘i _ \/% + (40 + 640; + 56q§) + (224 = 47680 - 672q§) Ja:
+ (14336 4 2210, 18990 40144, + 307297 + 792q§) G + ...
q; i

18



Classification

A comprehensive computer scan results in 7 x 10* models that
satisfy all criteria.

We expand the partition function in powers of g, = e=2™™

The constant term at the fermionic point Wy or the generic
point WS is proportional to ng — nr.

Wo<0 Wog=0 Wy>0

WS <0 | 3560 0 1856
WS =0 96 0 8848
WS > 0 0 0 62192
Total | 3656 0 72896

Table 1: Number of chiral models for the subclasses of models with I



Numerical calculation

Contributions to the one-loop potential 2(27)*V1 _100p arranged
according to energy level for two models (A and B) at the fermionic

point.

n Model A Model B

—1 24 4 244
—3 —9.87 —19.7

0 172. 2.11

- —29.6 —17.7

1 3.13 —2.73

2 9.71 8.18
Total +170. —5.47
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Chiral super no-scale models

A comprehensive scan shows that a number of approximately
7 x 10* models in the class under consideration satisfy all
criteria. Among them we have 9 x 10° super no-scale models.
A tedious numerical calculation leads to 1792 models with

Vo > 0.

400 -

300-

200 -

100 -

4 4

= 24
net chirality
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One loop potentials: Super no scale model potentials

—61 7.t = 1392
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One loop potentials: Super no scale model potentials

One loop potential as a function of the T,, U, moduli.
23
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One loop potential as a function of the T,, U, moduli.



Gauge coupling Running - Thresholds

The gauge coupling running is calculable in the context of
string theory. It turns out that they depend on the
compactification moduli. At the one loop level

1672 1672 M?
=R + bglog —= + A
g?(w) T g2 T

where Ms = gsMp , Mp = 1/4/32Gy,.
b, <+ Massless modes A, < Massive modes

see e.g. L. ). Dixon, V. Kaplunovsky and J. Louis (1991) , I. Antoniadis, E. Gava , K.S.
Narain (1992) , C. Angelantonj, I. Florakis and M. Tsulaia (2014), Florakis (2015)
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Decompactification problem

Ay — & = Y- {~aly log [ToU} In(T) n(U)|*]

i

—Bhy log | TUb [94(T) 9(U")|*]
o0 108 [2(T'/2) = Jo(U)[“lja(U') — 24| },

agb7ﬂéb’72b model dependent coefficients. The dominant
growth at T, > 1

Al =al (ng—logTQ) +...,

Solutions ? : a, = 0,...

Antoniadis (1990)
E. Kiritsis , C. Kounnas, P.M. Petropoulos, J. R. (1996)
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Computation of the thresholds

The dominant moduli dependent contribution 1s

R
A,a :_ﬁy‘Fﬁa

where the universal part Y is defined as
E,E.Ec — E
/FQZ(TU)<24£ ‘*+1008),

A= / * T raa(T,U) = ~log [TaUz In(M (V)]
At the limit T, >>1

Y=48rT, + O(T;") , A=ZT,—logT, +O(e>™)

and finally

3 27

NAg = (IBG I?a> il + (’)(log Tz) .



Computation of the thresholds

A comprehensive scan over a class of 7 x 10* models with
SO(10) x SO(8)* x U(1)* gauge symmetry yields for the
non-abelian gauge couplings

bio bs bg | #of models | %
3 3 3 29456 | 385
9 -3 -3 15840 | 20.7
-3 9 9 14000 | 18.3

22.5

In a big class of vacua we have Ba = 3R, (decompactification
condition) , hence there is no decompactification problem for

the gauge couplings gqo, gs, gj

A, = 7TT2 +O(logT))




Gauge coupling running

For models satisfying the decompactification condition
B, = 3k4 the coupling running is

1672 _ bk 1672
gi(p) g2

Here, v is the Euler-Mascheroni constant, Mk = 1/+/T; is the
Kaluza-Klein scale. Bq = bS" + b + b and g, = bV + b
with by = 8,

2e1—7 M2
KK) N

M2
log —= lo
+/BG g/,b2 -I_/Ba g(37‘(‘\/§ M%
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A Standard Model scenario

Rot+Ry 1 B+ Py log—s Byt By log (291_7 M%{K)

Qs Xem Lt MZ Lt

sin2 Oy =

Ry Qem | RYB2 — RoBy M%
Ry + Ry " b [ Ry + RY lOgM_%-I_

k’yﬁé — I?2,B</ log (281—’7 M%{K)]
Ry + RY 3mv/3 M2

1 R4 1 R3(B2 + BY)) M
— - _ log =S
043(/\/,2) Ozem(l?z + i?y) + [(53 R, + Ry o8 M%

, R3(B5+ 5y) 2" Mgy
" <ﬁ3 Ry + Ry ) > (BW\E M3 >]
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A Standard Model scenario

For (/8Y7 52753) — (_77 _%7 %) ’ (kY7 k27 k3) — (%7171) and
(B’W 1857/8:/%) — (—Ea _%7 —23_3)

o1206—rr7—7- 47777777777

0.1200 1 100TeV ]

I 50TeV ]

0.1195 - i

i 25TeV ]

/R L 4

S 01190 4

I 10TeV ]

0.1185 - i

"
0.1180 -

0.23120 0.23125 0.23130 0.23135
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Conclusions

We have analysed a class of non supersymmetric heterotic
vacua where SUSY is spontaneously broken via the
Scherk-=Schwartz mechanism. In this context we have
constructed semi-realistic models with the following
Interesting characteristics

- Fermion chirality
- Dynamical determination of supersymmetry breaking
scale Msysy < Mpianck
- Exponentially small cosmological constant
- Finite gauge coupling running (no decompactification
problem)
- These developments pave the way for
non-supersymmetric string phenomenology (consider
more realistic models e.g. Pati-Salam) 39



