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v If gravity(string) theory is dual to certain gauge theory, Outline
it should be possible to reconstruct any of them from the

other!

v If the above statement is true, the (quantum) gravity

should be encoded in the boundary theory!

v In view of the above, should we think of space-time,

ergo gravity as an emergent phenomenon?
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The first questions to ask:

e How to match the degrees of freedom on both sides of
duality 7

e How exactly the information from the bulk is encoded
in the boundary theory ?
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Thus:
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e The surface A is co-dimension 2 extremal surface
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Ryu-Takayanagi holographic entanglement

» Let us have a CFTin a state |¥) defined on a
spacetime geometry . Suppose the state |¥) is
associated with the geometry of a dual theory in
a space My whose boundary is B.

» Let us consider a spacial subsystem A of the
CFT and let Sy is its entropy , i.e. it measures
the entanglement of the fields in A with the rest
of the system.

Thus:

S(A) = 4éNArea(A), (1)

e The surface A is co-dimension 2 extremal surface
with the same boundary as A!

e The surface A is homologous to A, where AU A is
a boundary of d-dimensional space-like region in My!
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When the Ryu-Takayanagi formula applies, in 2d S(u,v) is the
entanglement entropy of the interval (u,v).

dv)
A‘\
/ \
[ dv |
I |
u—dv u v v +dv
Figure 1: The choice of intervals.
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When the Ryu-Takayanagi formula applies, in 2d S(u,v) is the
entanglement entropy of the interval (u,v).

y(u — du,v)

\
dv |

u—dv u v v+ dv

Figure 1: The choice of intervals.

For intervals

A= (u—du,u) and B=(u,v) and C = (v,v+ dv),
strong subadditivity leads to:

S(u— du,v) + S(u,v + dv)

2
0°S(u,v) <

— S(u,v) = S(u — du,v + dv) =~ S
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When the Ryu-Takayanagi formula applies, in 2d S(u,v) is the
entanglement entropy of the interval (u,v).

y(u — du,y)—"l’

u—dv u v v+ dv

Figure 1: The choice of intervals.

For intervals

A= (u—du,u) and B=(u,v) and C = (v,v+ dv),
strong subadditivity leads to:

S(u — du,v) + S(u,v + dv)

2
0°S(u,v) >0

— S(u,v) = S(u — du,v + dv) =~ iy 2

e Here S(u,v) is the length of the geodesic connecting the
boundary points (u,v) (on the cutoff surface).
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One way to compute entanglement entropy
The Renyi entropy:
Using the replica trick method, the Rényi entropy for the vacuum
is given by

exp((1-n) ™ )=(®4 (21)@—(22))=

-1
(21—22)2hn”’

where twist operators ®. (z) have dimensions
(hn, hpn) =c¢/24(n — 1/n,n —1/n).
The entanglement entropy: taking the limit n — 1 of (™)

Svac=lim S(™ = lim log(z1—22)" 2hn — ¢ 5 log 7(21 22)

n—1 n—1
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One way to compute entanglement entropy

The Renyi entropy:
Using the replica trick method, the Rényi entropy for the vacuum
is given by

exp((1-n) ™ )=(®4 (21)@—(22))=

-1
(21—22)2hn”’

where twist operators ®. (z) have dimensions
(hn, hpn) =c¢/24(n — 1/n,n —1/n).
The entanglement entropy: taking the limit n — 1 of (™)

Svae=lim S(™=1lim log(z1—22)~ 2hn— ¢ i logM

n—1 n—1

e For excited states |f)=U;|0) the calculation of the Rényi entropy
goes analogously

exp((1-m)SE)=(4£) " (£) "

(3)."" (45) )" o1+ (Fa)e-(f(e2)) o),
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is given by

exp((1-n) ™ )=(®4 (21)@—(22))=

-1
(21—22)2hn”’

where twist operators ®. (z) have dimensions
(hn, hpn) =c¢/24(n — 1/n,n —1/n).
The entanglement entropy: taking the limit n — 1 of (™)

Svae=lim S(™=1lim log(z1—22)~ 2hn— ¢ i logM

n—1 n—1

e For excited states |f)=U;|0) the calculation of the Rényi entropy
goes analogously

exp((1-m)SE)=(4£) " (£) "

(3)."" (45) )" o1+ (Fa)e-(f(e2)) o),

22

— lim ST — < Jog| £ 1) (z2) 62
Sea=lim Sez'=1z lo ’(f(n)—f(m))Q '

(3)

n—1
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A second way: Wilson line anchored at the bdy

The logic of the considerations:

e%PE = G(geodesic length) = Wilson line = (mat. element),
where the geodesic and the Wilson line end at the boundary
of AdS space.
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» Use CS formulation of 3d gravity ;

» Choose a convenient basis. In our case we choose

1
'L =0, L2 Ly=20,+h; L7121, = §:p281+hx,

acting on holomorphic functions of the auxiliary variable x in
representation of spin h with A,,_o = L' + 27(z) L.

Integrable
Structures in
Low-dimensional
Holography and
Cosmology

R.C.Rashkov*

Outline



A second way: Wilson line anchored at the bdy

The logic of the considerations:

e%PE = G(geodesic length) = Wilson line = (mat. element),
where the geodesic and the Wilson line end at the boundary
of AdS space.

The computations go as follows:

» Use CS formulation of 3d gravity ;

» Choose a convenient basis. In our case we choose

1
'L =0, L2 Ly=20,+h; L7121, = §x281+hx,

acting on holomorphic functions of the auxiliary variable x in
representation of spin h with A,,_g = L' + 27 (2)L~1.

» Define a generic Wilson line in this setup

“f dzA%(2) L%
Witerin) = [ dolmp {e “5OH 1 g
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» Wilson lines, bOPE and OPE blocks: (see 1612.06385)

At general ¢, a Wilson line with primary endpoints can
be written in the compact form

of L 12T0) B
<h|W<Zf,zi>|h>:<ef2id g T”—lz>,
@z (23)
subject to
67 (2
(@) =1+TD20)  arz)=0, @)

where the function z7(2) is defined by this differential
equation.

ants of an open Wilson line with primary
the endpoints
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The uniformizing w-coordinates are connected to the Wilson
line
1 w(z) w'(2)
rr(z)  2w'(z) w(z)+C’
with bdy condition C' = —w(zy).
We therefore find

lock in the presence of heavy state using

g h
. —2 (*fa, e w' (zp)w' (z; h
(hW (25, 20)|h) = Hme, () (6 L e AL =( Cepur(zi) ) ]

(w(z)—w(z))?

exactly reproducing the vacuum Virasoro block for an
arbitrary heavy background .

- In the case of Higher spin theories an approach based on
skew-tau functions has been used, see 1602.06233.
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e The entanglement entropy is given by

— lim S™ = £
Sex il_}ml Sex 9 log |

f'(z21)f'(22) 62

(f(z1) — f(Z2))2 '
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e The entanglement entropy is given by

— i g — €
Sew = lim Se” = 75 108

f'(z1) f' () 62

(f(z1) — f(z2))2

e The difference between vacuum entanglement and that of

excited states is

Svac_sez:ﬁ

c 10g‘ P EDF ) PP () (2 —29)?
G122 (G- (32
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e The difference between vacuum entanglement and that of
excited states is

Svac_sez:

T log‘ f,(21)f/(zz)f/(zil)f/(zﬁ)(}l—22)2 ‘
12 (F e~ F(2)2(F(21)~F(72))?

e Direct calculations show that (f’(z) # 0) the expansion about z
is

f'(2)f'(w) 1 1
(f(z) = f(w))*  (z—w)
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e The difference between vacuum entanglement and that of
excited states is

c £ D () F () F (£2) (21 —29)?
Svac—Sez=:5 1 Lore L
12 og‘ (f(z1)—F(22)2(F(z1)—F(22))?

e Direct calculations show that (f’(z) # 0) the expansion about z
F1()f (w) 1 -
= =S z)+—>5 2)(z — w) + -His
o feP = Gt e @S (D (6)> +

where S(f) denotes the Schwarzian derivative.
Some (very incomplete list of ) references: hep-th/9403108,
hep-th/0405152, 1604.05308,1604.03110, 1606.03307
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e The difference between vacuum entanglement and that of
excited states is

o e D ) P ) (22) (21 —29)?
Svac—Seq 121°g‘ (D)1 (22T G~ (22))2

e Direct calculations show that (f’(z) # 0) the expansion about z
F1()f (w) 1 -
= =S z)+—>5 2)(z — w) + -His
o feP = Gt e @S (D (6)> +

where S(f) denotes the Schwarzian derivative.

Some (very incomplete list of ) references: hep-th/9403108,
hep-th/0405152, 1604.05308,1604.03110, 1606.03307

= Next issue: study of the detailed structure of (5)



e A simple observation: the exact expression for
entanglement entropy satisfies the Louville field equation:

4]

Oudv

Cc

6

exp (—102 ex(f)

).

(7)
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5 0?Ser(f) ¢ 12
g2l e d) € oy (“Z5,.(0)). U
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e Let f be a nonconstant meromorphic function on a dToda tau-function

domain D in the complex plane. For z € D with f(z) # oo,
f'(z) # 0, we consider the quantity
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Gz +w, ) = =23 gl
(Z) w n=1

The quantities ¢,,[f](z) are called Aharonov invariants.
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e A simple observation: the exact expression for Holography and
. 5 . o Cosmology
entanglement entropy satisfies the Louville field equation:
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528236x(f) @ 12
p) = —exp ( ——Sez(f) ) - (7) T
Ua’U 6 IS Mébius structure
of entanlement
entropy: Aharonov
0 0 invariants and
e Let f be a nonconstant meromorphic function on a dToda tau-function

domain D in the complex plane. For z € D with f(z) # oo,
f'(z) # 0, we consider the quantity

Gletw ) == LSy (gt
n=1

flz+w) = f(2)

The quantities ¢,,[f](z) are called Aharonov invariants.
e The Aharonov invariants are all invariant under global
(Mébius) transformations.



variants and S..(f)

e {1, } exhaust all the Mébius invariants.
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ariants and S, (f)

e {1} exhaust all the Mébius invariants.
e The quantity 0G((, z)/0C

0G(¢2) _  f'()f'(Q)

o U0 - I
L S - DwlAEC - @)
C-2r X

is invariant under Mébius transformations v, [M o f] =

Unlfl, n 2> 2.
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riants and S, (f)

e {1} exhaust all the Mébius invariants.
e The quantity 0G((, z)/0C

9G(¢2) _ ')

o U0 - I
L S - DwlAEC - @)
C-2r X

is invariant under Mébius transformations v, [M o f] =
Yn[f], m > 2. The expression entering Se, has the
expansion:

@O = n-2
= + > (n=1)n[f1(2)(¢—2)" 2.
FO—-1GD? =22 "
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ions for Aharonov invariants

The first two ¢, [f] are

1[0 3 (@) _ 2
¢Aﬂ—g[ﬂ@)—§cmd)]—§ﬁﬁl(%

Aharonov proved the recursion formula:

n—2
(n+D¢nfl1=n_1[fI'+ > Yrlfln—rlf], n>3.
k=2

(10)
For instance, first few invariants are
S(f) 1., 252
wslfl = 25 = o) + 2250,

v = 28" () +35(NS (L. (1)
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e The classes univalent functions we use are

oo
S’:{f(z):a1z+a2z2+a3z3+m: Z anz™, a17£0

=1

n=0

oo
E={9(Z)=z+bo+”71+~--=bz+ > bnz—"}

alent functions and Grunsky coefficients

|
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ent functions and Grunsky coefficients

e The classes univalent functions we use are

=1

o0
5‘:{f(z):a1z+a2z2+a3z3+m= Z anz", al?éo}

E:{g(z):z+b0+b71+---:bz+§ bnz_"}
n=0
e The functions analytic in (o0, 00), (00,0) and (0,0):

log 2=LQ | Jog LE=1(O)
K z—

z2—¢

log £2)=9(O)

==¢
eAnother definition ( ®o(w) = 1):

d'(2)

n
T O, (w)z7 "L By (w)= Z brn,mw™.
m=0

K

0

n

bp,m are called Grunsky coefficients.
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e Expansions:
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9(2) —9(¢ 3 —m -
log ? = — bmnz mC TL’ R.C.Rashkov*
m,n=1

of entanlement

M Z bm7_n2’_mcn’ Mobius structure

2 =¢ =0 e
%) dToda tau-function
Z p—
z = ( m=0,n=0

e Entanglement entropy:

"(2)f (w 2 z) — f(w
Orw 1 26w

f
(f(z) = f(w)?  (z—-w)
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> dToda and Grunsky coefficients

e Briefs on dToda hierarchy
v’ Sato approach to integrable hierarchies: introduce
pseudodifferential operators

Wi =1+wi0 "+ wd %+ + 4w, 0™
and consider

W= lim Wy, =14+wd '+wd > +wzd >+,

m—roo

where w;(j = 1,2,...) are functions of (z,).
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> dToda and Grunsky coefficients

e Briefs on dToda hierarchy
v’ Sato approach to integrable hierarchies: introduce
pseudodifferential operators

Wi =1+wi0 "+ wd %+ + 4w, 0™
and consider

W= lim Wy, =14+wd '+wd > +wzd >+,

m—roo

where w;(j = 1,2,...) are functions of (z,).
v’ Define the Lax operator

L=WoW ™' =0+> wo ™, L'=Wwo'w,
i=1
Define
B,=L"+B, = (Wo"w1)".
The Lax equation is

oL
2= = [Bn,L] = BoL — LB,,.
o [Bn, L]

(13)

(14)
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N Integrable
Oda hleral’Chy Structures in
Low-dimensional

Holography and

Definition The dispersionless Toda hierarchy Cosmology
or or R.C.Rashkov* T
= _IB. [ = =B L 18
6tn { s }’ 8tn { s }7 ( )
oL - oL _
— ={B,, L}, — ={B,,~L},, 19
= {Bulh g =1Bulh, (19
where £ and £ are generating functions of unknowns e
wi = ui(t, ), @ = @6, D), Fes
L=p+us+up +ugp 2+ (20)
L =top~" + Uy + tgp + Usp® + -+ - (21)

and B, are defined by

Bn
B = (L"), an(i—”)so. (22)




e The equation (22) = map to n-th Faber polynomial (in
certain basis)! The Grunsky coefficients can be identified as
bpm = 1/nm(9,vy,) and can be represented in terms of
tau-function ( F = 1og Tyr0da)!
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e The equation (22) = map to n-th Faber polynomial (in Integrable
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certain basis)! The Grunsky coefficients can be identified as Low-dimensional
. Holography and

bpm = 1/nm(d,vy,) and can be represented in terms of oy

tau-function ( F = 1og Tyr0da)! R.C.Rashkov*T

d Grunsky coefficients

The Grunsky coefficients by, of the pair (g =
w(L), f = w(L)) are related to the tau function, or
fee energy as follows:
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and entanglement
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e The equation (22) = map to n-th Faber polynomial (in Integrable

Structures in

certain basis)! The Grunsky coefficients can be identified as Low-dimensional
. Holography and

bpm = 1/nm(d,vy,) and can be represented in terms of oy

tau-function ( F = 1og Tyr0da)! R.C.Rashkov*T

d Grunsky coefficients

The Grunsky coefficients by, of the pair (g =
w(L), f = w(L)) are related to the tau function, or
fee energy as follows:

Dispesionless Toda
and entanglement

2 2 2 t f excited

9°F _1_90°F _1 9°F GiRe[zY @

boo=~ o83 bn,o=5 ooty b—n0=5 Btgdt_p "’ nzl states
2 2
1 9°F __ 1 O F
bm’”_ mn Oty Otn b—m,—n— mn Ot_, 0t _ n,m=1
2

_ __ 1 O°F

b—m,n=bn,—m= mmn Ot_,, Otn’ n,mz1.

e The entanglement entropy takes the form

2
Svac*Sezzé 10g<1+(z7w)2 Zm,n 83”‘;” Zm—lwn—l>




The tau-function

v" The structures appeared so far - SL(2) projective
invariants (Schwarzian, Aharonov invariants);

Integrable
Structures in
Low-dimensional
Holography and
Cosmology

R.C.Rashkov*

Higher projective
invariants and
W-geometry



Integrable

The ta U-funCtlon Structures in
Low-dimensional
V" The structures appeared so far - SL(2) projective ey o
osmology

invariants (Schwarzian, Aharonov invariants);
e Next issue: generalization to higher invariants;
- Starting point is again the expression:

R.C.Rashkov*

Wond™ B ;1) = (O™ + wn ()™ + -+
twn () B (@34) =0, j=1,2,....m. (23)

One can find the expressions for w;(x;t) as

Pl —hiw’ g T
i W-geometry
(m) (m) (m)
RV oo —hm? - Ry
wi(z;t) = 7 2 1 (24)
ho) hy) AV
My e WD




e As usually, the standard independent solutions f() to (23) have
been generalized to include "times” {t1,%2,...} = hgj)(x;t).
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e As usually, the standard independent solutions f() to (23) have
been generalized to include "times” {t1,%2,...} = hgj)(x;t).
e The latter solutions, hl(]) are used to fedine the 7-function,

h(()1) hé’m)
h(l) hgm)
oty =| | . (25)
1 m
hiy hi,
where 4 ‘
h (2;0) = 9 (), (26)

and one can think of h,(f)(m;t) as defined by

onS (z;t) _ 9mh{) (w3 )

h(j) 1) =
n (%31) ot,, oz
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e As usually, the standard independent solutions f() to (23) have
been generalized to include "times” {t1,%2,...} = hgj)(x;t).
e The latter solutions, hl(]) are used to fedine the 7-function,

h(()1) hé’m)
h(l) hgm)
oty =| | . (25)
1 m
hiy hi,
where 4 ‘
h (2;0) = 9 (), (26)

and one can think of h,(f)(m;t) as defined by

onS (z;t) _ 9mh{) (w3 )

RO (z;t) = 27
9 (@it) = =0 g (27)
e Relations to w;
5 il
wj = (—1)/

Sa(0)T. 28
E( ) (28)

T
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Integrable
Structures in
Low-dimensional
- 5 g 0 . . . Holography and
The projective invariants associated to the ordinary differ- Cosmology

ential equation R.C.Rashkov*

y™ 4 pp o (2)y™ D+ +po(2)y =0, | (29)

are given by

1 nl . n—j
Pi = q; = W Z(_1)2n ‘7(1 — 5nj)< . J ) Higher projective
n n

invariants and
W-geometry

fori=0,1,...,n —2.



Here:

f

-

(n)
1

fa

7D
Wi =" i
[T

2

7

/
n—1

T(li'—l)
(i+1)

W; = (=1)""W.

(31)

Examle: Let us apply formula (21) to the n = 2 case - we
have only one invariant, namely pg which is given by

pPo = 7W2 ﬁW2

:H

1

f/l/

1

s (7)o ()|

|

(32)
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e For completeness, here are the invariants in the case of
n = 3. This case corresponds to the third order equation

y" 4+ p1(2)y" +po(2)y = 0. (33)

The formula (21) gives

(f;f"' 24 ( ; ';' : 5}5')] qe

/// {/l (f]_ l// f]{l/fé)/ 1 <f]_ /// f]/_//fé > 2
-t 73

b1 = T i i el
f1 2 = 1f2 f1 2 = {,fé f1 2~ {/fé
or
1 2 3 2
p0=§ [w1w2—wg—9w2} y, D1 = w1 —|—w§—§w2.
where
B Wl f/// f//f/// B W2 fl " f{//fé

W1 = 70— = W2 = — =
Wy fify 5 Ws  fifs = fi'f
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Higher spin 3d gravity
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Higher spin 3d gravity Structmes in
Low-dimensional
e From SL(2) formulation to SL(n) - define the o

connections as
R.C.Rashkov*

A= ((IZTa + az1.--asTa1ma5)dwﬂ

A= (@T, + @ Ty, )da.

The zweibeins and spin connections

1
euzi(Au_Au)a wp = 5 (Ap + Ap)-
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Higher spin 3d gravity Structmes in
Low-dimensional
e From SL(2) formulation to SL(n) - define the o

connections as
R.C.Rashkov*

A= ((IZTa + az1.--asTa1ma5)de
A= (@, Ta +ay T, a,)dz".

The zweibeins and spin connections
1
euzi(Au_Au)a wp = 5 (Ap + Ap)-
e The action

_ Higher spin

Sgrav - SCS[A] — Scs[A] holography and

more
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connections as
R.C.Rashkov*

A= ((IZTa + az1.--asTa1ma5)de
A= (@, Ta +ay T, a,)dz".

The zweibeins and spin connections
1
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e The action
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Higher spin 3d gravity Structmes in
Low-dimensional
e From SL(2) formulation to SL(n) - define the o

connections as
R.C.Rashkov*

A= ((IZTQ + az1.--asTa1ma5)de
A= (@, Ta +ay T, a,)dz".

The zweibeins and spin connections
1
euzi(Au_Au)a wp = 5 (Ap + Ap)-
e The action

_ Higher spin

Sgrav == SCS[A] - SCS[A] -+ de,y' holography and

more

e One can apply all the technology we developed so far to
this case!



Higher spin 3d gravity Structmes in
Low-dimensional
e From SL(2) formulation to SL(n) - define the o

connections as
R.C.Rashkov*

A= ((IZTQ + az1.--asTa1ma5)de
A= (@, Ta +ay T, a,)dz".

The zweibeins and spin connections
1
eu—i(Au_Au)a wp = 5 (Ay + Ap).

e The action
_ Higher spin

Sgrav == SCS[A] - SCS[A] -+ de,y' holography and

more

e One can apply all the technology we developed so far to
this case!
e Go to the main goal - bulk reconstruction!



The setup: radial evolution
e Consider Lorentzian d + 1 dimensionsl manifold (M, g) which is
solution of the Einstein equation.
Definition: The manifold (M, g) is called conformally compact if
3 a defining function

p 1 (0) = OM, dp#0 on OM, (35)

& the conf. equiv. metric /2§ = p?g extends smoothly on OM.
o Let OM = ¥. At some p we have X, fro which we have

1
n=0,= _%8p7 KZ = 'Vyavanu = §7Va£vgau
YVyw = Guv — ENuNy, €=n?, #BLI,. (36)

e Radial evolution

o 2 o
0,V = / Orij ~ 7/ ij ) 37
(7p) o Yij 3y, om0 € 7 ’YJ(S%_j (37)

where the last operator is just the operator of conformal scaling.
This means that the radial evolution is intimately related to the
conformal rescaling.
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Ward identities and Wheeler-deWitt equation
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Ward identities and Wheeler-deWitt equation Structures in
Low-dimensional
[ Gauge invariance (2d) Holography and
Cosmology
™ & [z .06
H,U(A) = A2 Z 2 A9 — 25— | T(A) = 0. R.C.Rashkov*
(4) /2<” +k6A)<a ka(SA) (4)=0
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Ward identities and Wheeler-deWitt equation ructores i

Structures in

. . Low-dimensional
e Gauge invariance (2d) Holography and
Cosmology

™ & [z .06
H,U(A) = A4 2 Ae — Z T(A) = 0. R.C.Rashkov* T
(4) /E<” +k5A)<6 kaéA) (4)=0
e Diffeomorphisms with parameters (v, v) (as a Hamiltonian
constraint) are generated by (2d)
T = .0
H,2U(A) = A+ —— A — —0— | P(A) =0.
4) /2(” +k6A>(a k66A> (4)=0
Higher spin

holography and
more



Ward identities and Wheeler-deWitt equation

e Gauge invariance (2d)

6 ¢ _ T §°
H,U(A /(mu”)(maa)m —0.
(4) . koA 7054 )T

e Diffeomorphisms with parameters (v, v) (as a Hamiltonian
constraint) are generated by (2d)

5@ _ T 5@
H,U(A z/ (mu” ) <8A“—6 )pr —0.
(4) 5, koA 7054 )T

e Make Fourier-Laplace transformation:

W = [ DAVWNA), = ET (e
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Ward identities and Wheeler-deWitt equation

e Gauge invariance (2d)

6 ¢ _ T §°
H,U(A /(mu”)(a/ma)m —0.
(4) . koA 7054 )T

e Diffeomorphisms with parameters (v, v) (as a Hamiltonian
constraint) are generated by (2d)

5@ _ T 5@
H,U(A z/ (mu” > <8A“—8 )pr —0.
(4) 5, koA 7054 )T

e Make Fourier-Laplace transformation:
W = [ DAVAPGA),  xu=e F T 3g)

e The H, constraint in p-representation = Ward ldentity

H,29(A) =0 = /Z (v+ pv) (0 — pd — 20p) 51;23) U(A)

N 2 —\ 93
S g d°z(v + p0)0° pv(A),
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e Define for 3d gravity case the conjugate

2 9
Hab _ = ,
\/’757116

e Diffeo’s
Hy =V, 11},

e The Hamiltonian constraint (geometry idependence, AdS
case)

dl_£ 1> : +R(v) + w,

H=Fr": (H“bHCdGabcd -

t equation and Ward ldentity
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e Define for 3d gravity case the conjugate

2 9
Hab _ = ,
\/’757116

e Diffeo’s
Hy =V, 11},

e The Hamiltonian constraint (geometry idependence, AdS
case)

dl_£ 1> : +R(v) + w,

implies "Wheeler-deWitt equation!

H=Fr": (H“bHCdGabcd -

HY =0.

equation and Ward ldentity
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itt equation and Ward Identity
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itt equation and Ward Identity

e On the other hand
v =)= [ Duw(n(-4)

Therefore, 3d functionsl W[A] satisfies Wheeler-deWitt
equation providing u fulfills 2d Ward Identity!
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itt equation and Ward Identity

e On the other hand
v =)= [ Duw(n(-4)

Therefore, 3d functionsl W[A] satisfies Wheeler-deWitt
equation providing u fulfills 2d Ward Identity!

e The last statement provides direct proof of the holography
in this particular case!

Integrable
Structures in
Low-dimensional
Holography and
Cosmology

R.C.Rashkov*

Higher spin
holography and
more



g N Integrable
t equation and Ward ldentity Structures in
Low-dimensional

Holography and
L] On the other hand Cosmology

R.C.Rashkov*

v =)= [ Duw(n(-4)

Therefore, 3d functionsl W[A] satisfies Wheeler-deWitt
equation providing u fulfills 2d Ward Identity!

e The last statement provides direct proof of the holography
in this particular case!

e The projective invariants provide bases for W-geometries
and higher spin theories!
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Integrable

equation and Ward ldentity Structures in

Low-dimensional
Holography and
L] On the other hand Cosmology
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v =)= [ Duw(n(-4)

Therefore, 3d functionsl W[A] satisfies Wheeler-deWitt
equation providing u fulfills 2d Ward Identity!

e The last statement provides direct proof of the holography
in this particular case!

e The projective invariants provide bases for W-geometries
and higher spin theories!

e For n = 3 (W3 case) the action in terms of invariants

‘C ~ (IO(jO + (I1(jl' Higher spin
holography and
more




n N Integrable
equation and Ward ldentity Structures in
Low-dimensional

Holography and
L] On the other hand Cosmology

R.C.Rashkov*

v =)= [ Duw(n(-4)

Therefore, 3d functionsl W[A] satisfies Wheeler-deWitt
equation providing u fulfills 2d Ward Identity!

e The last statement provides direct proof of the holography
in this particular case!

e The projective invariants provide bases for W-geometries
and higher spin theories!

e For n = 3 (W3 case) the action in terms of invariants

‘C ~ QO(jO + Q1(jl' Higher spin
holography and
more

e For general n (W, case)

L~ Zcoeﬂ”itrqicjj + e

K2




A sketch of relation to SYK

e The Sachdev-Ye-Kitaev (SYK) model describes interacting
Majorana fermions with random (gaussian) coupling

N

s=3 [at| L voove -1t 3 Imten, e,

a=1 a1...0q

where .
S J3q—1) o B
<J 1.t qJﬂl---ﬁq> — Nq_l H5 1ﬁ1'

e SYK model addresses many interesting issues as properties of
non-Fermi liquid behavior, quantum chaos, emergent conformal
symmetry and holographic duality. SYK model can be used to
describe black holes (BHs) in 2d nearly-Anti-de-Sitter gravity.

e The effective action is just the Schwarzian

" 7"\ 2
SSch:_C/td{f,t}7 {f’t}:?_g<?> .
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e 2d generalization suggested in 1701.00528 (G. Turiaci, H,
Verlinde), leading to double Schwarzian theory in the UV (in

light-cone)

Suy ~ /dudv{x+,u}{x_,v}.
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e 2d generalization suggested in 1701.00528 (G. Turiaci, H,
Verlinde), leading to double Schwarzian theory in the UV (in
light-cone)

Sy ~ /dudv{x+,u}{x_,v}.

e Using Lagrange multipliers <—

Sy ~ /dudv (ej{m,u} + e{f{m,v}) — /e“"e:e;.
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e 2d generalization suggested in 1701.00528 (G. Turiaci, H,
Verlinde), leading to double Schwarzian theory in the UV (in
light-cone)

Sy ~ /dudv{x+,u}{x_,v}.
e Using Lagrange multipliers <—
Syy ~ /dudv (ej{m,u} + e,j{:u,v}) — /e‘“’e:e;.
e Relations between double Schwarzian & Polyakov-Liouville

actions (L ~ popo in our case) - in 1701.00528 (G. Turiaci,
H, Verlinde)

S |B) = min (/ Sp(E+e)— /e’“’eteJ) )
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e Using the same logic as in the SL(2) case, for n=3 we
propose the higher spin SYK 2D theory by the lagrangian
density

1 2 1 2
B = Wiwg — wh — wg’] = [wlwg —wl — —ws

9 3 9

1 1
+ (w1 + wh — gwg)(wl + wh — ng). (39)

- some other reductions of 2D — 1D are discussed in
1705.08408 (T. Mertens, G. Turiaci and H. Verlinde).
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e Using the same logic as in the SL(2) case, for n=3 we
propose the higher spin SYK 2D theory by the lagrangian
density

R.C.Rashkov*

1 2 1 2
B = Wiwg — wh — 9w§] '3 [wlwg —wh — §w§’

1 1

+ (w1 +wh — gwg)(wl + wh — ng). (39)

- some other reductions of 2D — 1D are discussed in

1705.08408 (T. Mertens, G. Turiaci and H. Verlinde). S
igher spin

o We generalize the above picture to arbitrary higher spin holography and

theories by making use of W-geometry and jet bundles!
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Summary

e Putting all these considerations together, one can draw the
following conclusions:

» We found that the following quantities are related by
appropriate tau-functions:
- entanglement entropy and Aharonov invariants;
- Higher spin gravities;
- higher projective invariants.

Integrable
Structures in
Low-dimensional
Holography and
Cosmology

R.C.Rashkov*

Higher spin
holography and
more



Summary

e Putting all these considerations together, one can draw the
following conclusions:

» We found that the following quantities are related by
appropriate tau-functions:
- entanglement entropy and Aharonov invariants;
- Higher spin gravities;
- higher projective invariants.
» The basis for W-geometries are related to tau-functions

Integrable
Structures in
Low-dimensional
Holography and
Cosmology

R.C.Rashkov*

Higher spin
holography and
more



Summary

e Putting all these considerations together, one can draw the
following conclusions:

» We found that the following quantities are related by
appropriate tau-functions:
- entanglement entropy and Aharonov invariants;
- Higher spin gravities;
- higher projective invariants.
» The basis for W-geometries are related to tau-functions

» \We propose a generalization of the relations between
SYK (Schwarzian) model, integrable 2d CFT and 3d
Gravity
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Summary

e Putting all these considerations together, one can draw the
following conclusions:

» We found that the following quantities are related by
appropriate tau-functions:
- entanglement entropy and Aharonov invariants;
- Higher spin gravities;
- higher projective invariants.
» The basis for W-geometries are related to tau-functions

> We propose a generalization of the relations between
SYK (Schwarzian) model, integrable 2d CFT and 3d
Gravity

> We suggest that all these have geometric description in
terms of W-geometries;
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Integrable
SU m mary Structures in
Low-dimensional
e Putting all these considerations together, one can draw the REteEgErny e
Cosmology

following conclusions:
R.C.Rashkov*

» We found that the following quantities are related by
appropriate tau-functions:
- entanglement entropy and Aharonov invariants;
- Higher spin gravities;
- higher projective invariants.
» The basis for W-geometries are related to tau-functions

> We propose a generalization of the relations between
SYK (Schwarzian) model, integrable 2d CFT and 3d
Gravity

Higher spin
g 0 ngQ o holography and
> We suggest that all these have geometric description in more

terms of W-geometries;
> We give arguments that entanglement entropies in

low-dimensionnal holography is intimately related to
Toda theory.
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e Future directions

» Generalization of HS projective actions for 1d and 2d
theories
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