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NC geometry and gravity

Early Universe =⇒ Quantum gravity =⇒ Quantum space-time
Noncommutative (NC) space-time =⇒ Gravity on NC spaces.

General Relativity is based on the diffeomorphism symmetry. This
concept (space-time symmetry) is difficult to generalize to NC
spaces. Different approaches:

NC spectral geometry [Chamseddine, Connes, Marcolli ’07; Chamseddine,

Connes, Mukhanov ’14].

Emergent gravity [Steinacker ’10, ’16].

Frame formalism, operator description [Burić, Madore ’14; Fritz,

Majid ’16].

Twist approach [Wess et al. ’05, ’06; Ohl, Schenckel ’09; Castellani, Aschieri

’09; Aschieri, Schenkel ’14].

NC gravity as a gauge theory of Lorentz/Poincaré group
[Chamseddine ’01,’04, Cardela, Zanon ’03, Aschieri, Castellani ’09,’12; Dobrski ’16].
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SO(2, 3)? NC gravity: General

SO(2, 3)? NC gravity is based on:

-NC space-time → Moyal-Weyl deformation with small, constant
NC parameter θαβ = −θβα; [x̂µ, x̂ν ] = iθµν .
-gravity → SO(2, 3) gauge theory with symmetry broken to
SO(1, 3), [Stelle, West ’80; Wilczek ’98].
-?-product formalism: Moyal-Weyl ?-product.
-Seiberg-Witten (SW) map → relates NC fields to the
corresponding commutative fields.

Our goals:

-consistently construct NC gravity action, add matter fields,
calculate equations of motion and find NC gravity solutions;
investigate phenomenological consequences of the constructed
model.
-diffeomorphism symmetry broken by fixing constant θαβ, give
physical meaning to θαβ.



SO(2, 3)? NC gravity: Action
SO(2, 3)? gauge theory: gauge field ωµ and field strength tensor
Fµν of the SO(2, 3) gauge group:
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with
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The decomposition in (1, 2) very much resembles the definitions of
curvature and torsion in Einstein-Cartan gravity leading to General
Relativity. Indeed, after introducing proper action(s) and the
breaking of SO(2, 3) symmetry (gauge fixing) down to the
SO(1, 3) symmetry one obtains this result [Stelle, West ’80].

To fix the gauge: the field φ transforming in the adjoint
representation:

φ = φAΓA, δεφ = i [ε, φ] ,

with ΓA = (iγaγ5, γ5) and γa and γ5 are the usual Dirac gamma
matrices in four dimensions.



Inspired by [Stelle, West ’80; Wilczek ’98] we define the NC gravity
action as

SNC = c1S1NC + c2S2NC + c3S3NC , (4)

with

S1NC =
il

64πGN
Tr

∫
d4xεµνρσF̂µν ? F̂ρσ ? φ̂ ,

S2NC =
1

64πGN l
Tr

∫
d4xεµνρσφ̂ ? F̂µν ? D̂ρφ̂ ? D̂σφ̂+ c .c . ,

S3NC = − i

128πGN l
Tr

∫
d4x εµνρσDµφ̂ ? Dν φ̂ ? D̂ρφ̂ ? D̂σφ̂ ? φ̂ .

The action is written in the 4-dimensional Minkowski space-time,
as an ordianry NC gauge theory. It is invariant under the NC
SO(2, 3)? gauge symmetry and the SW map guarantees that after
the expansion it will be invariant under the commutative SO(2, 3)
gauge symmetry.



Using the SW map solutions for the fields F̂µν and φ̂ and the
Moyal-Weyl ?-product, we expand the action (4) in the orders of
NC parameter θαβ. In the commutative limit θαβ → 0 and after
the gauge fixing: φa = 0, φ5 = l , these actions reduce to

S
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( l2

16
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with e a
µ = 1

l ω
a5
µ , e = det ea

µ, R = R ab
µν e µ

a e ν
b . The constants

c1, c2 and c3 are arbitrary and can be determined from some
consistency conditions.



Comments:

-main adventage of SO(2, 3) approach: basic fields are not metric
and/or vielbeins but gauge fields of (A)dS group; consequences
also in the NC setting.
-after the symmetry breaking: spin connection ωµ and vielbeins eµ.
They are independent, 1st order formalsim.

-varying (4) with respect to ωµ and vielbeins eµ gives equations of
motion for these fields. The spin connection in not dynamical (the
equation of motion is algebraic, the zero-torsion condition) and can
be expressed in terms of vielbeins, 2nd order formalism.

-(4) written in the 2nd order formalism has three terms:
Gauss-Bonnet topological term, Einstein-Hilbert term and the
cosmological constant term.

-arbitrary constants c1, c2 and c3: EH term requires c1 + c2 = 1,
while the absence of the cosmological constant is provided with
c1 + 2c2 + 2c3 = 0. Applying both constraints leaves one free
parameter (can be used later in the NC generalization).



Calculations show that the first order correction S
(1)
NC = 0. Already

known result [Chamseddine ’01,’04, Cardela, Zanon ’03, Aschieri, Castellani ’09].

The first non-vanishing correction is of the second order in the NC
parameter; it is long and difficult to calculate. However, the second
order corrections can be anayzed sector by sector: high/low energy,
high/low/zero cosmological constant, zero/non-zero torsion.

In the low energy sector, i.e., keeping only terms of the zeroth, the
first and the second order in the derivatives of vierbeins (linear in
Rαβγδ, quadratic in T a

αβ), we calculate NC induced corrections to
Minkowski space-time. This calculation cen be generalized to other
solutions of vacuum Einstein equations.



SO(2, 3)? NC gravity: NC Minkowski space-time
A solution of the form:

g00 = 1− R0m0nx
mxn ,

g0i = −2

3
R0minx

mxn ,

gij = −δij −
1

3
Rimjnx

mxn , (5)

where Rµνρσ ∼ θαβθγδ: the Reimann tensor for this solution. The
coordinates xµ we started with, are Fermi normal coordinates:
inertial coordinates of a local observer moving along a geodesic;
can be constructed in a small neighborhood along the geodesic
(cylinder), [Manasse, Misner’63; Chicone, Mashoon’06; Klein, Randles ’11].

The measurements performed by the local observer moving along
the geodesic are described in the Fermi normal coordinates. He/she
is the one that measures θαβ to be constant! In any other reference
frame, observers will measure θαβ different from constant.
Fixed NC background: gauge fixed diffeomorphism symmetry,
prefered reference frame given by Fermi normal coordinates.



Adding matter fields: spinors

Spinors are naturally coupled to gravity in the first order formalism.
NC generalization of an action for Dirac spinor coupled to gravity
in SO(2, 3)? model:

Ŝψ =
i

12

∫
d4x εµνρσ

{̂̄ψ ? (Dµφ̂) ? (Dν φ̂) ? (Dρφ̂) ? (Dσψ̂)

− (Dσ
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(6)
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}
? ψ̂ + h.c. ,

where Dσψ̂ = ∂σψ̂ − i ω̂ ? ψ̂ is the SO(2, 3) covariant derivative in
the defining representation. Expanging the action (6) (?-product,
SW-map) gives a nontivial first order correction for a Dirac fermion
coupled to gravity.



Phenomenological consequences: in the flat space-time limit we
find a deformed propagator:

iSF (p) =
i

/p −m + iε
+

i

/p −m + iε
(iθαβDαβ)

i

/p −m + iε
+ . . . , (7)
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1
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)
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A spinor moving along the z-axis and with only θ12 = θ 6= 0 has a
deformed dispersion relation (analogue to the birefringence effect):

~v1,2 =
∂E

∂~p
=

~p

E~p

[
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(
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12l2
− m

3l3

)
θ

E 2
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]
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with E~p =
√

m2 + p2
z . These results are different from the usual

NC free fermion action/propagator in flat space-time:

Ŝψ =

∫
d4x ̂̄ψ ? (i /∂ψ̂ −mψ̂

)
=
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d4x ̂̄ψ(i /∂ψ̂ −mψ̂

)
.



Adding matter fields: U(1) gauge field

Metric tensor in SO(2, 3) gravity is an emergent quantity.
Therefeore, it is not possible to define the Hodge dual ∗H .

Yang-Mills action S ∼
∫
F ∧ (∗HF ) cannot be defined. A method

of auxiliary field f̂ [Aschieri, Castellani ’12], with δ?ε f̂ = i [Λ̂ε ?, f̂ ]. An
action for NC U(1) gauge field coupled to gravity in SO(2, 3)?
model:

ŜA = − 1

16l
Tr

∫
d4x εµνρσ

(
f̂ ? F̂µν ? Dρφ̂ ? Dσφ̂ ? φ̂

+
i

3!
f̂ ? f̂ ? Dµφ̂ ? Dν φ̂ ? Dρφ̂ ? Dσφ̂ ? φ̂

)
+ h.c . . (10)

After the expansion (?-product, SW-map) and on the equations of
motion fa5 = 0, fab = −eµa eνbFµν the zeroth order of the action
reduces to

SA = −1

4

∫
d4x e gµρgνσFµνFρσ . (11)

describing U(1) gauge field minimally coupled to gravity.



NC Landau problem

Phenomenological consequences of our model and NC in general:
the NC Landau problem: an electron moving in the x-y plane in

the constant magnetic field ~B = B~ez . Our model in the flat
space-time limit gives(

i /∂ −m + /A + θαβMαβ

)
ψ = 0 , (12)

where θαβMαβ is given by
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For simplicity: θ12 = θ 6= 0 and Aµ = (0,By , 0, 0). Assume

ψ =

(
ϕ(y)

χ(y)

)
e−iEt+ipx x+ipz z . (14)

with ϕ, χ and E represented as powers series in θ.



Deformed energy levels, i.e., NC Landau levels are given by

En,s =E
(0)
n,s + E

(1)
n,s , (15)

E
(0)
n,s =

√
p2

z + m2 + (2n + s + 1)B ,

E
(1)
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E
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B

(E
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)

+
θB2

2E
(0)
n,s

(2n + s + 1) .

Here s = ±1 is the projection of electron spin. In the
nonrelativistic limit and with pz = 0, (15) reduces to

En,s = m − sθ

(
m

12l2
−

1

3l3

)
+

2n + s + 1

2m
Beff −

(2n + s + 1)2

8m3
B2

eff +O(θ2) , (16)

Beff = (B + θB2) .

Consistent with string theory interpretation of noncommutativity
as a Neveu-Schwarz B-field.



In addition, the induced magnetic dipole moment of an electon is
given by

µn,s = −∂En,s

∂B
= −µB (2n + s + 1)(1 + θB) , (17)

where µB = e~
2mc is the Bohr magneton.

Some numbers:

-θ = ~2c2

Λ2
NC

and ΛNC ∼ 10TeV ,

-accuracy of magnetic moment measurements δµn,s ∼ 10−13,
-for observable effects in µn,s , B ∼ 1011T needed. This is the
magnetic field of some neutron stars (magnetars), in laboratory
B ∼ 103T .



Discussion

I A consistend model of NC gravity coupled to matter fields.

I Pure gravity:
-NC as a source of curvature and torsion.
-The breaking of diffeomorphism invariance is understood as
gauge fixing: a prefered refernce system is defined by the
Fermi normal coordinates and the NC parameter θµν is
constant in that particular reference system.

I Coupling of matter fields: spinors and U(1) gauge field.
-deformed propagator and dispersion relations for free
fermions in the flat space-time limit.
-nonstandard NC Electrodynamics (QED), new terms
compared with the standard QED on the Moyal-Weyl NC
space-time: phenomenological consequences, renormalizability.

I Study: corrections to GR solutions (cosmological,
Reissner-Nordström black hole,. . . ); fermions in curved
space-time (cosmological neutrinos); . . .
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