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Dark Matter



Discovery of Neptune

Observation

@ Alexis Bouvard (1767-1843): Observed irregularities in the motion of Uranus.
@ Urbain Le Verrier (1811-1877): Predicted the existence and position of Neptune.

@ Johann Galle & Heinrich d'Arrest (1846): They observed Neptune within 1° of prediction.
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Many galactic rotation curves
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Darker still

Many direct and indirect detection experiments

CDMS, CRESST, EDELWEISS, EURECA, ZEPLIN, XENON, DEAP, ArDM, WARP, DarkSide,
PandaX, LUX, SIMPLE, PICASSO, DAMA/Nal, DAMA/LIBRA, DMTPC, DRIFT, Newage,
MIMAC, AMANDA, IceCube, ANTARES, EGRET, PAMELA, AMS, LHC, ADMX, DARWIN
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@ Cline, Phys. Scripta 91 (2016) 033008 @ XENON Coll., PRL 119 (2017) 181301
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Gravity



How to modify the General Relativity

Conformal gravity

H. Weyl, Math. Zeit. 2 (1918) 384 :

Assume gravity has an additional symmetry beyond coordinate invariance:

guv(x) = e=2¢(M) g, (x), which is the conformal symmetry. There is one and only one action

which is invariant under the local conformal transformations:

mo 1
S=-¢ / d*x/—g CH7 Cppppy "OEE —2¢ / d'xy/=gl-3 R+ Ru R

Semiclassical corrections
Utiyama and De Witt, JMP 3 (1962) 608; Utiyama, PRD 125 (1962) 1727 :

The mean value of the stress-energy tensor T, of a set of quantized fields interacting with a

classical geometry is plagued with infinities. In order to make it finite, cosmological constant

and Einstein’s constant are renormalized, and a counterterm must be introduced in Lagrangian:

AL = /—g[aR? + BR,, R"]
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How to modify the General Relativity

Holdom and Ren, A QCD analogy for quantum gravity, PRD 93 (2016) 124030 :

Ultraviolet Modification

“Quadratic gravity presents us with a renormalizable, asymptotically free theory of quantum

gravity. When its couplings grow strong at some scale, as in QCD, then this strong scale sets

the Planck mass:”

4 2p - 2__ Qv po
= /dx\/_ SM2R 3f2R 2f2c Cﬂ,,,m)

nfrared Modification
Similar to the QCD chiral Lagrangian, the IR physics is expected to be described by a

| A

derivative expansion of the curvature tensors with a leading Einstein-Hilbert term:”

1
S= /d4x\/_—g <§M,%,R + caR? + 2 CHP7 Crypr + . )
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Relative Importance of Terms

5 0.6
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@ Eksi, Giingdr and Tiirkoglu, PRD 89 (2014) 063003
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Einstein—Weyl Gravity
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Basic idea
@ Action:

M2
@ Einstein-Hilbert part dominates in the “like solid body rotation” region.

@ Weyl part dominates in the “basically a flat rotation curve” region.

See also: e Psaltis, Living Rev. Rel. 11 (2008) 9; e Maeder, Astrophys. J. 849 (2017) 158.
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Weyl Gravity

1
5= _C/d4x' —ECHP7 Cuypo MO —2</d4XV _g[_§R2 + R RH

v
Equations of motion

Bach tensor: 1
Bu = _§H’“’ + Kuw =0,

1
H., =2R (RW - ZRgW) +2(gu0—-VuV.)R,

1 1
Ky =0 (R,W A 5gWR) — VAVuR), — VAVLR, + 2RAR), — EgNVRaBRQB :

Cemsinan Deliduman (MSFAU) Astrophysical Aspects of Weyl Gravity Nis — 12 June 2018 12 / 30



Solution



Spherical Symmetry

Metric ansatz:
ds?> = —A(r)dt? +

Killing vectors:

Conserved quantities:
Equation of motion:
Tangential velocity:

Ve

Metric:
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“rr" field equation

Transformation: B(r) = [b(r)]” =  b[b"r> + wb'r — %(1 — w)2b] + (% —1)(b')°r*=0.

Metric:

2 r\*" o r2w=1) 2, 2042 2
ds*=—( — dt® + ——— - dr” 4 r°(dx“ + dy”).
(G + Gr2w=1))3
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Solutions

[3] Solution valid for S? (k = 1) and H? (k = —1) geomettries

Transformation: o
_ R 2(1—w)
B(r) = — W)2r< F(r)
and a change of variable:
r = Z/0=w)
Solution: i)
3krei—w 5
B(r)= ——— -1
()= 51—y (0~
with
_ G \/ G 2 3 G \/ G 2 572
v(r) = [(m"!‘CTF (m + )2 - 1) +(m+c2— (m + G)? — 1) ] .
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Stability of circular orbits

Metric ansatz: q

B0) dr® + r?2d6? + r?sin® 0d¢>

ds? = —A(r)dt? +

Equation for the radial coordinate (at § = 7/2):
E2
-2
=B = _ =
# =50 (355~ 7 +)

B , 2 AE?
B (2
=" T <r3 2A2)

Verr = B(r) (% = l;—j +e)

Geodesic equation:

Effective potential:

Small perturbation to the circular orbit:

RV 2B
r=R+46 = 6:%”6 = v/ €

= m(zA'Z — AA” —3A'A/R) <0

v
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Gravitational Lensing



Strong Lensing : Geometry

Deflection angle: Aa=2(ps — o) — 7
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Null Geodesic and Deflection Angle

Metric:

2 r\*" 2 1 2 2 402 2 2
ds = —( — dt® + dr® 4 r°d6° + r°sin0do* |
re B(r)

with B(r) = ﬂ(l + e2m/3 2 + ei471—/3h_2)2
8(1 — W)2A2 k]
1/3 A
r w
A = 2 _ 54m?
1= (14 3my)y/1 — 6my — 54m?k, Ay = P

For a null geodesic in the § = 7/2 plane:

d¢ ro _ L
%Z (1-¢)B(Q), CZT and rO:bZE

Deflection angle:

Lk
Ba=2 [ NETREG)
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Strong lensing in Weyl Geometry

@ Expand the integrand in m and evaluate the integral.
@ First expand the result in .
@ Then expand the result in k.

Deflection angle:

/ A 15 [ No |\
a = 4mg—2 —2mg O <TI'_4_3 3>+’yo<2mo+ 30>
|\
with mo:ﬂ7 oE’yro,koEkrgE ?O,/\()E/\rg.
o

e Batic, Nelson and Nowakowski, PRD 91 (2015) 104015.
o Rindler and Ishak, PRD 76 (2007) 043006; @ Arakida and Kasai, PRD 85 (2012) 023006.

e Potapov at el., PRD 93 (2016) 124070; e Lim and Wang, PRD 95 (2017) 024004.
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Future directions

@ Matching Scwarzschild geometry of inner region and Weyl geometry of the outer region at

the onset of flat rotation curve behavior.

o Investigate possible effect of Einstein—Hilbert term on soft breaking of the scale invariance

in the outer regions of the galaxies.
Explaining gravitational lensing data of elliptical galaxies.

Gravitational lensing by clusters.

© 00

Black holes and ultra compact objects in Einstein—Weyl gravity. Determining gravitational

wave profile.

(6) Cosmological problems: the Einstein—Weyl gravity in the far infrared, cosmic singularity

problem, anisotropic solutions, BBN mechanism, accelerated expansion, etc.
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Extra



Gravitational Waves
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o LIGO and Virgo Collaborations, PRL 116 (2016) 061102 ® LIGO and Virgo Collaborations, PRL 116 (2016) 221101

Konoplya, Zhidenko, PLB 756 (2016) 350 :
@ “The last stages of formation of a single black hole and consequent quasinormal ringing
represent intrinsic characteristics of a theory of gravity.”

@ “There might exist a strongly deformed Kerr-like black hole, corresponding to an

alternative theory of gravity, such that its behavior in the post-Newtonian regime is quite

similar to Kerr black hole, while its near-horizon behavior is different.”
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Dark Core in Train Wreck Cluster

THE ASTROPHYSICAL AL, 783:78 (18pp), 2014 March 10 doi:10.1088/0004-637X/783/2
© 2014, The Americ Society. Al rights reserved. Printed inthe US.A.

HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS
CONFIRMATION OF THE DARK SUBSTRUCTURE IN A520*

M. J. JEE!, H. HOEKSTRA?, A. MAHDAVI’, AND A. BABUL*S
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Bullet Cluster from ACDM Cosmology

THE ASTROPHYSICAL JOURNAL, 718:60-65, 2010 July 20 doi:10.1088/0004-637X/718/1/60
©2010, The American Astronomical Society. Al ights eserved. Printd in the US.A.

BULLET CLUSTER: A CHALLENGE TO ACDM COSMOLOGY

JOUNGHUN LEE' AND EllCHIRO KOMATSU?
1 Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747, Republic of Korea; jounghun @astro.snu.ac.kr
2 Texas Cosmology Center and Department of Astronomy, The University of Texas at Austin, 1 University Station, C1400 Austin, TX 78712, USA
Received 2010 March 3; accepted 2010 May 20; published 2010 June 25

ABSTRACT
To quantify how rare the bullet-cluster-like high—velocil;« merging systems are in the standard A cold dark matter
(CD! we use a | 1 @7h~3 Gpe®) ical N-body MICE si ion to calculate the

distribution of infall velocities of subclusters around massive main clusters. The infall velocity distribution is given
at (1-3)Rago of the main cluster (where Rago is similar to the virial radius), and thus it gives the distribution of
realistic initial velocities of subclusters just before collision. These velocities can be compared with the initial
velocities used by the i i i i of 1E0657-56 in the literature. The latest
parameter search carried out by Mastropietro & Burkert has shown that an initial velocity of 3000 km s~' at about
2Ry is required to explain the observed shock velocity, X-ray brightness ratio of the main and subcluster, X-ray
morphology of the main cluster, and displacement of the X-ray peaks from the mass peaks. We show that such
a high infall velocity at 2Rz is incompatible with the prediction of a ACDM model: the probability of finding
3000 km s~ in (2-3) Ryqg is between 3.3 x 10~ and 3.6 x 10~°. A lower velocity, 2000 km s~ at 2Ryq, is also
rare, and moreover, Mastropietro & Burkert have shown that such a low initial velocity does not reproduce the
X-ray brightness ratio of the main and subcluster or morphology of the main cluster. Therefore, we conclude that
the existence of 1E0657-56 is incompatible with the prediction of a ACDM model, unless a lower infall velocity
lution for 1E0657-56 with <1800 km s~ at 2R:

sol 200 is found.

Mon. Not. R. Astron. Soc. 383, 417-423 (2008) doi:10.1111/}.1365-2966.2007.12403.x

The collision velocity of the bullet cluster in conventional and modified
dynamics

G. W. Angus'* and S. S. McGaugh?*

Cemsinan Deliduman (MSF; rophysical Aspects of Weyl Gravity



Galaxies 10 billion years ago

LETTER

doi:10.1038/nature21685

Strongly baryon-dominated disk galaxies at the
peak of galaxy formation ten billion years ago
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Dark Galaxy Dragonfly 44 (NGC 3810

THE ASTROPHYSICAL JOURNAL LETTERS, 828:L6 (6pp), 2016 September 1 doi:10.3847/2041-8205/828/1/L6
©2016. The American Astronomical Society. All ights reserved.

CrossMark
A HIGH STELLAR VELOCITY DISPERSION AND ~100 GLOBULAR CLUSTERS
FOR THE ULTRA-DIFFUSE GALAXY DRAGONFLY 44

PIETER VAN DOKKUM', ROBERTO ABRAHAMZ, JEAN BRODIE>, CHARLIE CONROY", SHANY DANIELT,
ALLISON MER‘RITTI, LAMIYA M()WLAl, AARON R()MAN()WSKV3'5, AND JIELAT ZHANG
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Dwarf galaxy NGC1052-DF2

LETTER

doi:10.1038/nature25767

A galaxy lacking dark matter

Pieter van Dokkum!, Shany Danieli!, Yotam Cohen!, Allison Merritth?, Aaron J. Romanowsky®*, Roberto Abraham?®,
Jean Brodie?, Charlie Conroy®, Deborah Lokhorst®, Lamiya Mowla', Ewan O’Sullivan® & Jielai Zhang®
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. The full Dragonfly field, approximately 11 degree?, centred on NGC 1052, The < Ee > (L(D pc )
zoom-in shows l.he immediate surroundings of NGC 1052, with NGC1052- DF2 highlighted in the inset.
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A galaxy lacking dark matter?

Furthermore, and paradoxically, the existence of NGC1052-DF2
may falsify alternatives to dark matter. In theories such as modified
Newtonian dynamics (MOND)? and the recently proposed emergent
gravity paradigm?®, a ‘dark matter’ signature should always be detected,
as it is an unavoidable consequence of the presence of ordinary matter. In
fact, it had been argued previously?’ that the apparent absence of galaxies
such as NGC1052-DF2 constituted a falsification of the standard
cosmological model and offered evidence for modified gravity. For a
MOND acceleration scale of ag=3.7 X 10* km?s~?kpc ™, the expected?
velocity dispersion of NGC1052-DF2 is oy ~ (0.05GMjarsao) /4 ~
20kms™!, where G is the gravitational constant—a factor of two higher
than the 90% upper limit on the observed dispersion.

rodial velocity
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A galaxy lacking dark matter?

Furthermore, and paradoxically, the existence of NGC1052-DF2
may falsify alternatives to dark matter. In theories such as modified
Newtonian dynamics (MOND)? and the recently proposed emergent
gravity paradigm?®, a ‘dark matter’ signature should always be detected,
as it is an unavoidable consequence of the presence of ordinary matter. In
fact, it had been argued previously?’ that the apparent absence of galaxies
such as NGC1052-DF2 constituted a falsification of the standard
cosmological model and offered evidence for modified gravity. For a
MOND acceleration scale of ag=3.7 X 10* km?s~?kpc ™, the expected?
velocity dispersion of NGC1052-DF2 is oy ~ (0.05GMjarsao) /4 ~
20kms ™!, where G is the gravitational constant—a factor of two higher
than the 90% upper limit on the observed dispersion.

rodial velocity
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CURRENT VELOCITY DATA ON DWARF GALAXY NGC1052-DF2 DO NOT CONSTRAIN IT TO LACK
DARK MATTER
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