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      Holographic braneworld is a 3-brane located at the 

boundary of the asymptotic AdS5. The cosmology is 

governed by matter on the brane in addition to  

      the boundary CFT 
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AdS/CFT  correspondence is a holographic duality between 

gravity in d+1-dim space-time and quantum CFT on the d-dim 

boundary. Original formulation stems from string theory: 

Conformal  

Boundary  

at z=0 

AdS bulk 
time 

Equivalence of 3+1-dim 

N =4 Supersymmetric YM Theory  

and string theory in AdS5S5 

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 

                     AdS/CFT 



Using the solution                      we can define a functional 

Given  induced metric        on the boundary the geometry is 

completely determined by the field equations obtained from the 

variation principle      
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Consider a bulk action with only gravity in the bulk 
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AdS/CFT conjecture:  S[h]  can be identified with the generating 

functional of a conformal field theory (CFT)on the boundary 

 CFT L  –  CFT Lagrangian 

The induced metric hμν serves as the source for the stress tensor of 

the dual CFT so that its vacuum expectation value is obtained from the 

classical action  

CFT 1

2

S
T

hh
 










The on-shell action is IR divergent and must be regularized and 

renormalized.   The asymptotically AdS metric in the Fefferman-Graham 

form is 
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Explicit expressions for            , in terms of arbitrary          can be found in 
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where the length scale ℓ  is the AdS curvature radius. 

Near z=0 the metric can be expanded as 

Holographic renormalization 



We regularize the action by placing a brane (RSII brane) near the AdS 

boundary, i.e., at z = εℓ, ε<<1, so that the induced metric on the brane is 
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The bulk splits in two regions: 0≤ z ≤εℓ, and εℓ ≤ z ≤∞. We can either 

discard the region 0≤ z ≤εℓ (one-sided regularization) or invoke the Z2 

symmetry and identify two regions (two-sided regularization). For 

simplicity we shall use the one-sided regularization.  The regularized 

bulk action is 
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The renormalized boundary action is obtained by adding 

 counter-terms and taking the limit  ε→0 
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The necessary counter-terms are 
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Now we demand that the variation with respect to the induced metric hμν of 

the regularized on shell bulk action (RSII action) vanishes, i.e., 

reg[ ] 0S h 

Which may be expressed as matter on  

the brane 

cosmological  

constant 
Einstein Hilbert term 

AdS/CFT prescription 
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The variation of the action yields Einstein’s equations on the 

boundary 
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This is an explicit realization of the AdS/CFT correspondence:   

the vacuum expectation value of a boundary CFT operator is obtained  in 

terms of geometrical quantities of the bulk. 

de Haro et al, Comm. Math. Phys. 217 (2001) 
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Starting from AdS-Schwarzschild static coordinates   

and making the coordinate transformation                                 

the line element will take a general form 

Imposing the boundary conditions at z=0: 
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 Holographic cosmology 



where                     is the Hubble rate at the boundary and μ is the 

dimensionless parameter related to the bulk BH mass 

Solving Einstein’s equations in the bulk one finds 
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Comparing the exact solution with the expansion 
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we can extract         and        . Then, using the de Haro et al. expression 

for TCFT we obtain  
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The second term is the conformal anomaly  

The first term is a traceless tensor with non-zero components 

23
2 2

00 2 4 2

5

3 4
3

64

i

i

a
t t H H

G a a a a

  



    
          

     

3
CFT 2

2

5

3

16

a
T H

G a a









 
  

 

Hence, apart from the conformal anomaly, the CFT dual to the time 

dependent asymptotically AdS5 metric  is a conformal fluid with the 

equation of state                        
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From  the boundary Einstein equations we obtain the holographic 

Friedmann equation (from now on we assume spatial flatness, i.e., we 

put            ) 
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quadratic deviation 

The second Friedmann equation can be derived from the energy-

momentum conservation 
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The holographic cosmology has  interesting properties. Solving the first 

Friedmann equation as a quadratic equation for H2 we find 
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Demanding that this equation reduces to the standard Friedmann  

equation in the low energy limit, i.e., in the limit when 
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it follows that we must discard  the + sign solution. Then, it follows 

that the physical range of the Hubble rate is between 0 and             

starting from its  maximal value                       at an arbitrary initial 

time t0.  At that time, which may be chosen to be zero, the density 

and cosmological scale are both finite so the Big-Bang singularity is 

avoided!  
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Holographic cosmology appears also in other contexts. In particular it 

can be derived in    
Modified Gauss-Bonnet gravity 

This model was shown to be ghost free. 

  

 

If in addition  one requires that the second Friedmann equation is linear 

in     , then f  must be a function of only one variable f = f(J)  where 
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see, e.g., I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective actions in quantum 

gravity ( IOP publishing, Bristol, 1992) 

The second requirement cannot be fulfilled in a simple f(R) modified 

gravity including the Starobinski model 



In a cosmological context with spatially flat metric one finds                      , 

the function f becomes a function of H, and the first  Friedmann equation 

takes the form 
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Hence, the holographic cosmology is reproduced in the modified 

Gauss-Bonnet gravity of the form 
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One postulates a field, dubbed the inflaton,  usually a self-interacting 

scalar that evolves  towards the minimum of a slow roll potential. In 

conjunction with Friedman equation one solves the field equations 

from the beginning to the end of inflation. During inflation a slow roll 

regime is assumed, i.e., a very slow change of the Hubble rate so the 

Universe expands  almost as a de Sitter spacetime with a large 

cosmological constant. 

Quantum fluctuations of the inflaton field generate initial density 

perturbations of order                     at the time of decoupling  
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One of the popular models of inflaton is the tachyon field θ of dimension of 

length with the Lagrangian  
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 Tachyon inflation 

 

Where  ℓ is some length scale introduced to make the potential V  

dimensionless .  

 

Our aim is to study tachyon inflation in the framework of holographic 

cosmology . The model is based on a holographic braneworld scenario 

with an effective tachyon field on a D3-brane located at the holographic 

boundary of  ADS5. In our model we identify ℓ  as the curvature radius of 

AdS5  



The covariant Hamiltonian corresponding to L is   
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We  also demand that these equations reduce to the standard 

Friedmann  equation in the low energy limit. 

From  the covariant Hamilton’s equations   
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The Lagrangian and Hamiltonian are identified with the pressure and 

energy density:                          , and we employ the holographic  

Friedmann equations   
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In the following we will examine a simple exponential potential       

                       

 

where ω is a free dimensionless parameter. We will also consider the 

initial value hi
2 as a free parameter ranging between 0 and 2. 

Inflation on the holographic brane 

Tachyon inflation is based upon the slow evolution of the field θ   

with the slow-roll conditions  

2 1, | | 3 .H  

2 2 2 22(1 1 / 3),h H V  

2 2= 8 /G 

Then, during inflation we find  
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and the evolution is constraint to the  physical range of the Hubble rate  
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Another important quantity is the so called number of e-folds defined as  

 

 

 

where  the subscripts i and  f denote the beginning and  the end of 

inflation. Typically                         is sufficient to solve the flatness and 

horizon problems   

The most important parameters that characterize inflation are the  slow-

roll inflation parameters εj  defined recursively     
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The number of e-folds  can also be calculated explicitly yielding an 

expression that relates our free parameters hi  and ω to N  

From the field equations we find an approximate equation  
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Hence, for a fixed chosen N we have only one free parameter 



/ℓ 

Slow roll parameters ε1 (dashed red line) and ε2 (blue line) 

versus time  for fixed N=60 and  ω2=0.027 corresponding 

to the initial hi
2=0.6  



The  slow-roll parameters εj are related to the observational quantities 

such as the tensor-to-scalar ratio r and the scalar spectral index ns 

defined by    
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r versus  ns for fixed N and varying initial value hi
2  ranging from 0 to 2 

along the lines. The parameter ω is also varying in view of the functional 

dependence N=N(hi, ω). The black lines denote the Planck constraints 

contours of the 1σ (dash-dotted) and 2σ (dotted)  confidence level 

N=70 

N=90 

2σ 

1σ 



Conclusions and outlook 

We have shown that the slow-roll equations of the tachyon 

inflation with exponentially attenuating potential on the 

holographic brane are quite distinct from those of the 

standard tachyon inflation with the same potential 

 The ns - r relation depends on the initial value of the Hubble 

rate and on the assumed value of the number of e-folds  N 

and show a reasonable agreement  with the Planck 2015 

data for N >70. 

 The presented  results  obtained in the slow roll 

approximation are preliminary. What remains to be done is 

to solve the exact equations numerically for the same 

potential and for various other potentials that have been 

exploited in the literature.  
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Why AdS? 

Anti de Sitter space is dual to a conformal field theory at 

its boundary (AdS/CFT correspondence)  

AdS  is a maximally symmetric solution to Einstein’s 

equations with negative cosmological constant.  In 4+1 

dimensions the symmetry group is AdS5≡ SO(4,2) 

The 3+1 boundary conformal field theory is invariant under 

conformal  transformations: Poincare + dilatations + special 

conformal transformation = conformal group ≡ SO(4,2) 

Basic idea 

Braneworld cosmology is based on the scenario in which 

matter is confined on a brane in a higher dimensional 

bulk with only gravity allowed to propagate in the bulk. 

The brane can be placed, e.g.,  at the boundary of           

a  5-dim asymptotically Anti de Sitter space (AdS5) 
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AdS/CFT conjecture:  S[φ,h]  can be identified with the generating 

functional of a conformal field theory on the boundary 

 CFT L  –  conformal field theory Lagrangian 

 O   –  operators of dimension Δ 
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where the boundary fields serve as sources for CFT operators 

The induced metric hμν serves as the source for the stress tensor of the 

dual CFT so that its vacuum expectation value is obtained as 

In this way the CFT correlation functions can be calculated as functional 

derivatives of the on-shell bulk action, e.g., 
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One usually imposes the RS fine tuning condition  
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The Planck mass scale is determined by the curvature of 

the five-dimensional space-time  
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which eliminates the 4-dim cosmological constant. 



Bound on the AdS5 curvature radius ℓ: 

The classical 3+1 dim gravity is altered on the RSII brane 

For               the Newtonian potential of an isolated source 

on the brane is given by 
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J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000)  

Table top tests of Long et al find no deviation of Newton’s 

potential and place the limit 

1 120.1mm    or     > 10 GeV 



Holographic type cosmologies appear also in other contexts:   
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3. The quartic term  as a quantum correction to the Friedmann equation 
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4. Modified  Gauss-Bonnet gravity 
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Inflation 

A short period of  rapid expansion at the very early 

universe (starting at about 10-43 s after the Big Bang) 

 

           1025 times in 10-32 s 

 

 



The main problems of the standard 

cosmology solved by inflation 

• Horizon problem  – homogeneity and isotropy of the 

CMB radiation 

• Flatness problem – fine tuning of the initial conditions 

• Large scale structure problem –  the origin of 

    initial density perturbations that serve as seeds of the 

observed structure today  

      •  Monopole problem – absence of topological defects:    

    monopoles, cosmic strings, domain walls  



 
 One of the popular models of inflaton is the tachyon. Our aim is to study 

tachyon inflation in the framework of holographic cosmology . The model 

is based on a holographic braneworld scenario with an effective tachyon 

field on the D3-brane located at the holographic bound of  ADS  bulk.  A 

tachyon Lagrangian of the form 

can be derived in the context of a dynamical brane moving in a  4+1 

background with a general warp 
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The field θ is identified with the 5-th coordinate z and the potential is related 

 to the warp  

 Tachyon inflation 
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