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Introduction and motivation

Imagine a gauge theory without asymptotic freedom (β1 > 0)

µ
dg

dµ
=

β1
16π2

g3 → g2(µ) =
8π2

β1 log (Λ/µ)

Λ = Landau pole (g(Λ) =∞)

We got a Landau pole at 1-loop
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What about higher loops?

µ
dg

dµ
=

β1
16π2

g3 +
β2

(16π2)2
g5 + . . .

The Landau pole may be avoided if the gauge coupling (and

eventually other couplings) flow to a finite value g∗ 6= 0 :

β1
16π2

g3∗ +
β2

(16π2)2
g5∗ + . . . = 0

→ asymptotic safety

The problem is that unless β1 parametrically small (see later), this

important only if

g2

16π2 ∼> O(1)

destroying perturbativity.
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Hard to work with non-perturbativity.

However if such a non-trivial UV fixed point exists, then the theory

in the UV is asymptotically conformal (no running). We lost

perturbativity but gained conformal symmetry

This we will use in connection with supersymmetry
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Constraints on conformal field theories

Our set-up is a d = 4 supersymmetric theory

• free in the IR

• with hypothetical UV interacting fixed point= asymptotically

safe theory

IR

free

UV

safe
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Trace anomaly for stress-energy tensor Tµν in curved background :

Tµµ = −a× E4 + . . .

Euler invariant

E4 = RαβγδRαβγδ − 4RαβRαβ +R2

quadratic diffeomorphism invariant combination

a . . . central charge
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The most important (non-perturbative) constraint on RG flows is

the famous a-theorem (4d version of the 2d c-theorem):

∆a ≡ aUV − aIR > 0

Because of it

• RG flow is irreversible

• a provides a measure for # of d.o.f.
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Calculation of the a-central charge

In a generic field theory a can be calculated perturbatively.

In most case this not useful because fixed point non-perturbative

Fortunately in supersymmetry central charges can be got exactly
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(Ri, ni) . . . (R− charge,# d.o.f.) of chiral field i

|G| . . . dimension of gauge group G = # of gauge fields

a = 2|G|︸︷︷︸
gaugino

+
∑
i

nia1(Ri)︸ ︷︷ ︸
chiral fields

, a1(R) = 3(R− 1)3 − (R− 1)

Total a equal to sum of single a1 (one for each chiral multiplet)
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This exact relation is due to the fact that

Tµν and jµR are different components of the same supermultiplet

→ relations between Tµµ and ∂µj
µ
R :

Tµµ = −a E4 + . . .

∂µj
µ
R = [Tr U(1)R]︸ ︷︷ ︸

∝
∑

i ni(Ri−1)

RαβγδR̃
αβγδ +

[
Tr U(1)3R

]︸ ︷︷ ︸
∝

∑
i ni(Ri−1)3

FRµν F̃
µν
R

U(1)R symmetry unavoidable in supersymmetric fixed points

(conformal theories): R charge part of the superconformal algebra
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Since

R(chiral superfield) =
2

3
D(chiral superfield)

for a free theory (D(φfree) = 1)

R(φfree) = 2/3

1

3

2

3
1

4

3
5

3

R

-
2

9

2

9

a

a1(RUV ) > a1(RIR) = a1(2/3) not possible unless

at least one field in UV has R > 5/3 (necessary but not sufficient)
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If we know the R-charges, we know the central charge a

How do we get the R-charges Ri?

In SCFT the β functions must vanish:

• NSVZ β function is proportional to

T (G) +
∑
i

T (ri)(Ri − 1) = 0

T . . .Dynkin index

• β function for superpotential coupling λa of

W = λa
∏
i

φqiai

is proportional to ∑
i

qiaRi − 2 = 0
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Three possibilities:

1. # of constraints above bigger than number of chiral fields

→ no SCFT

2. # of constraints above equal to number of chiral fields

→ the solution to above equations unique and represents a

possible candidate for CFT; to check consistency with ∆a > 0

3. # of constraints above smaller than number of chiral fields

→ one uses the above equations to express some R-charges

with the others; then applies the a-maximization to calculate

the remaining R-charges:
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a-maximization:

∂a

∂Ri
= 0

This gives same number of equations than unknowns Ri.

Equations are quadratic so there can be several real solutions. One

should choose the one with

∂2a

∂Ri∂Rj
all negative eigenvalues
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Examples

We will see now

• 2 different ways of getting consistent UV fixed points

• an almost realistic UV safe GUT
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SO(10) at large Nf

One type of representation only will not work. NSVZ:

TG + n1T1(R1 − 1) = 0 → R1 = 1− TG
n1T1

< 1

In the IR R1 = 2/3 and aIR > aUV (a-theorem violated)

Imagine we have

n16 generations of representation 16

n126 generations of representation 126
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NSV Z = 0 plus a−maximization to get R16 and R126

The number of generations involved needs to be very large:

n16 ≥ 418

416 417 418 419 420
n16

-0.4

-0.2

0.2

0.4

0.6

Δa

n126max(n16)

(n126max(n16)+n126min(n16))/2

n126min(n16)
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Number of such solutions is ∞ (not bounded from above )

For n16 →∞ the solution exists providing

1

7

√
3

38
<
n126
n16

<
2(
√

301− 11)

315

In numbers

0.0401394 <
n126
n16

< 0.0403133

This is a large Nf1/Nc︸ ︷︷ ︸
n126/10

and Nf2/Nc︸ ︷︷ ︸
n16/10

case with bounded Nf1/Nf2︸ ︷︷ ︸
n126/n16
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Non-zero superpotential

The first candidate for a supersymmetric UV fixed point found by

Martin, Wells:

Take SU(Nc) with 2 adjoints X, Y plus Nf × (Q+ Q̃) and

W = y1Q̃XQ+ y2TrX
3

Automatically R(Q) = R(Q̃) = R(X) = 2/3 and

TG + TX (R(X)− 1) + TY (R(Y )− 1) + 2NfTQ (R(Q)− 1) = 0

→ ∆a > 0 if Nf > 4Nc
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The idea here is to make the superpotential terms determine

R-charges of all fields except 1, the last one being determined by

the vanishing NSVZ.

In Martin-Wells example, all fields (X, Q, Q̃) have R = 2/3

except one (Y ) which has R > 5/3.

Possible to generalize. For example take Nc/Nf = 0.46, Nc →∞,

and

W = y1Q̃X
4Q+ y2Tr X

6

leads to UV fixed point with all constraints satisfied.
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A quasi-realistic UV safe theory

This is a phenomenological use of the above.

Minimal SO(10) grand-unified theory (GUT):

Matter fields:

3× 16 = 3× (Q+ L+ uc + dc + ec︸ ︷︷ ︸
SM

+νc)

Higgses:

10 = Hu +Hd︸ ︷︷ ︸
MSSM Higgses

+T + T̄

210, 126, 126 needed to break SO(10)→SM and give correct masses

to SM charged fermions and neutrinos (type I+II seesaw)
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Huge SO(10) representations:

β1 = +109

Naively 1-loop Landau pole

Right place to look for possible asymptotic safety
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We can keep or not various trilinear terms in the superpotential

The only solution is the superpotential

W = y1 2103 + y2 210 126 126 + y3 210 126 10 + y4 210 126 10

+
∑

a,b=2,3

16a 16b
(
y5,ab 10 + y6,ab 126

)
i.e. all the most general trilinear couplings except that 161 never

appearing in W (first generation massless)

The constraints (all β-functions vanishing) fix

R(161) =
113

6

and all other R = 2/3.
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Duality

Seiberg type dualities connect theories with different gauge group

and field content but same flavor structure. Example SQCD:

ELECTRIC MAGNETIC

SU(Nc) : g SU(Nf −Nc) : g̃

Nf ∗
(
Q+ Q̃

)
Nf ∗ (q + q̃) +N2

f ∗M

W = 0 W = ỹ qMq

• valid only in the IR (in the fixed point)

• valid only in the conformal window 3Nc/2 ≤ Nf ≤ 3Nc

• quantum numbers of magnetic singlets M ∼ Q̃Q

• at least one of the two theories must be strongly coupled

• duality of type strong↔weak

BW2018 24



Borut Bajc

If a theory has a nontrivial UV fixed point and a nontrivial IR fixed

point, and we know the duals of both of them, then reasonable that

they are dual in the whole flow

The examples of UV fixed points considered so far do not have a

nontrivial IR fixed points (no duals in the IR), but also in UV we

do not know the dual

BW2018 25



Borut Bajc

We can have the following simple example:

1. first at t→∞ have SQCD with SU(Nc) and Nf + 1 quarks

2. run down to the IR, usual duality with the magnetic theory

3. perturb the electric theory with a mass m for 1 quark pair; if

this mass deep in the fixed point regime, duality still valid

4. this is the starting point (new UV) for the flow to the new IR

5. in the deep IR again (a new) duality

t ≡ log (µ/m) IR (t < 0) UV (t > 0)

magnetic

theory

Nf flavours Nf + 1 flavours

Ñc colours Ñc + 1 colours

electric

theory

Nf flavours Nf + 1 flavours

Nc colours Nc colours
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Ñc ≡ Nf −Nc
Electric and magnetic theory are dual in the UV (t = 0) and IR

(t = −∞) so we believe they are dual to each other in the whole

interval −∞ < t ≤ 0

If we choose

Nf = 3Ñc − 1

then the magnetic theory is weakly coupled

β1 = 3Ñc −Nf = 1

and we can calculate the flow perturbatively

BW2018 27



Borut Bajc

α̃g ≡
Ñcg̃

2

(4π)2
, α̃y ≡

Ñcỹ
2

(4π)2

Up to 2 loops

d

dt

α̃g(t)
α̃y(t)

 =
(
α̃g(t) α̃y(t)

)
M

α̃g(t)− α̃g(−∞)

α̃y(t)− α̃y(−∞)


M . . . perturbatively calculable 2× 2 matrix

(α̃g, α̃y)(−∞) . . . perturbatively calculable fixed points values

This can be easily numerically solved
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Ñc = 100 (→ Nf = 299, Nc = 199)

-30000 -25000 -20000 -15000 -10000 -5000 0
t

0.01

0.02

0.03

0.04

α̃g

-30000 -25000 -20000 -15000 -10000 -5000 0
t

0.002

0.004

0.006

0.008

0.010

α̃y

Magnetic theory solved
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What about the electric theory?

αg ≡
Ncg

2

(4π)2
, f(x) ≡ 1

1− 2x

Formally we can write the RGE:

dαg(t)

dt
= − 6

Nc
α2
g(t)f(αg(t)) (Nc +Nf (RQ(t)− 1))︸ ︷︷ ︸

NSVZ β function

Problem: theory non-perturbative so we do not know RQ(t) except

in the fixed points (R-charges of Q in the conformal field theories)

RQ(0) = 1− Nc
Nf + 1

(UV)

RQ(−∞) = 1− Nc
Nf

(IR)

How can duality help?
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We need a physical quantity which have to be the same in the

electric and magnetic theory.

What about the a central charge?

Two ways to define it outside the fixed points:
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1) Komargodski, Schwimmer: through dilaton-dilaton (φφ)

scattering

a(µ) = aUV −
∫ ∞
µ

dµ
σφφ→φφ(µ)

µ3

• since cross-section σ > 0→ a(µ) decreasing from UV to IR

(a-theorem)

• since cross-section σ is a physical quantity, so is a(µ)

Non-perturbative electric ael(µ) and perturbative magnetic

amag(µ) should match along the whole flow

ael(µ) = amag(µ)

Good to prove a-theorem but not easy to calculate
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2) Kutasov: with Lagrange multipliers

ael = 2(N2
c − 1) + 2NfNca1(RQ)− λg(Nc +Nf (RQ − 1))

Maximisation:

dael
dRQ

= 2NfNca
′
1(RQ)− λgNf = 0

→ λg = 2Nca
′
1(RQ)

→ ael = 2(N2
c − 1) + 2NfNc (a1(RQ)− a′1(RQ) (RQ −RQ(−∞)))

Still we do not know what RQ(t) along the flow is

BW2018 33



Borut Bajc

No proof that Komargodski-Schwimmer and Kutasov definitions

coincide.

However possible to prove they do coincide for simple cases

We assume that they coincide in general

→ ael(RQ(t)) = amag(α̃g(t), α̃y(t))

r.h.s. perturbatively calculable → RQ(t).

Then from formal RGE

dαg(t)

dt
= − 6

Nc
α2
g(t)f(αg(t)) (Nc +Nf (RQ(t)− 1))

→ αg(t) once we choose αg(0) ≤ 0.0216
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-30000 -25000 -20000 -15000 -10000 -5000
t

0.05

0.10

0.15

0.20

0.25

αg
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Notice that

magnetic α̃g decreasing towards IR (more perturbative)

but

electric αg increasing towards IR (more non-perturbative)

strong-weak duality !
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Conclusion

• instead of usual asymptotic freedom we considered theories

with asymptotic safety

• Theory: two types of supersymmetric asymptotically safe

theories presented

1. large Nf

2. Martin-Wells’ type

• Phenomenology: in minimal renormalizable SO(10) GUT a

quasi-realistic possibility for a UV safe theory found: one

generation of matter fields decoupled from the superpotential

• explicit example of Seiberg duality in the whole flow
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