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Contact geometry (1)

A (2n + 1)-dimensional manifold M is a contact manifold if there
exists a 1-form η (called a contact 1-form) on M such that

η ∧ (dη)n−1 6= 0 .

Associated with a contact form η there exists a unique vector
field Rη called the Reeb vector field defined by the contractions
(interior products):

i(Rη)η = 1 ,

i(Rη)dη = 0 .



Contact geometry (2)
Simple example (1)

On R3 with cartesian coordinates (x , y , z)
Contact form

η = dz + xdy

Reeb vector
Rη =

∂

∂z
Riemannian metric

g = (dx)2 + (dy)2 + η2

= (dx)2 + (1 + x2)(dy)2 + 2xdy dz + (dz)2

Contact plane ker η at a point (x , y , z) is spanned by the vectors

X1 = ∂x

X2 = x∂z − ∂y

Planes appear to twist along the x axis (“propeller picture”)



Contact geometry (3)
Simple example (2)

z

x y

Figure : The contact structure ker (dz + x dy).



Sasakian geometry (1)

A simple and direct definition of the Sasakian structures is the
following:

A compact Riemannian manifold (M,g) is Sasakian if and only
if its metric cone (C(M) ∼= R+ ×M , ḡ = dr2 + r2 g) is Kähler.

Here r ∈ (0,∞) may be considered as a coordinate on the
positive real line R+. The Sasakian manifold (M,g) is naturally
isometrically embedded into the metric cone via the inclusion
M = {r = 1} = {1} ×M ⊂ C(M).

Kähler form on metric cone

ω =
1
2

d(r2η) = rdr ∧ η +
1
2

r2dη .



Sasakian geometry (2)

Sasaki-Einstein geometry is naturally “sandwiched” between
two Kähler-Einstein geometries as shown in the following
proposition:

Let (M,g) be a Sasaki manifold of dimension 2n − 1. Then the
following are equivalent
(1) (M,g) is Sasaki-Einstein with Ricg = 2(n − 1)g;
(2) The Kähler cone (C(M), ḡ) is Ricci-flat, i.e. Calabi-Yau

Ricḡ = 0;
(3) The transverse Kähler structure to the Reeb foliation FRη is

Kähler-Einstein with RicT = 2ngT .



Complete integrability on T 1,1 space (1)
One of the most familiar example of homogeneous toric
Sasaki-Einstein five-dimensional manifold is the space
T 1,1 = S2 × S3 endowed with the following metric

ds2(T 1,1) =
1
6

(dθ2
1 + sin2 θ1dφ2

1 + dθ2
2 + sin2 θ2dφ2

2)

+
1
9

(dψ + cos θ1dφ1 + cos θ2dφ2)2 .

The global defined contact 1-form is

η =
1
3

(dψ + cos θ1dφ1 + cos θ2dφ2) .

The Reeb vector field Rη has the form

Rη = 3
∂

∂ψ
,

and it is easy to see that η(Rη) = 1 .



Complete integrability on T 1,1 space (2)
The Hamiltonian describing the geodesic flow is

H =
1
2

g ij pipj ,

where g ij is the inverse metric of T 1,1 space and pi = gij ẋ j are
the conjugate momenta to the coordinates (θ1, θ2, φ1, φ2, ψ)

pθi =
1
6
θ̇i , i = 1,2

pφ1 =
1
6

sin2 θ1 φ̇1 +
1
9

cos2 θ1 φ̇1 +
1
9

cos θ1 ψ̇+

1
9

cos θ1 cos θ2 φ̇2 ,

pφ2 =
1
6

sin2 θ2 φ̇2 +
1
9

cos2 θ2 φ̇2

+
1
9

cos θ2 ψ̇ +
1
9

cos θ1 cos θ2 φ̇1 ,

pψ =
1
9
ψ̇ +

1
9

cos θ1 φ̇1 +
1
9

cos θ2 φ̇2 ,



Complete integrability on T 1,1 space (3)

The conserved Hamiltonian takes the form:

H =3
[
p2
θ1

+ p2
θ2

+
1

sin2 θ1
(pφ1 − cos θ1pψ)2

+
1

sin2 θ2
(pφ2 − cos θ2pψ)2

]
+

9
2

p2
ψ .

Taking into account the isometries of T 1,1, the momenta
pφ1 ,pφ2 and pψ are conserved.



Complete integrability on T 1,1 space (4)

Two total SU(2) angular momenta are also conserved:

~j 2
1 =p2

θ1
+

1
sin2 θ1

(pφ1 − cos θ1pψ)2 + p2
ψ ,

~j 2
2 =p2

θ2
+

1
sin2 θ2

(pφ2 − cos θ2pψ)2 + p2
ψ .



Complete integrability on metric cone (1)
Conifold metric is

ds2
mc =dr2 +

r2

6

2∑
i=1

(
dθ2

i + sin2 θidφ2
i

)

+
r2

9

(
dψ +

2∑
i=1

cos θidφi

)2

.

On the metric cone the geodesic flow is described by

HC(T 1,1) =
1
2

p2
r +

1
r2 H̃ ,

where the radial momentum is

pr = ṙ .

Hamiltonian H̃ has a similar structure as in T 1,1, but
constructed with momenta p̃i related to momenta pi by

p̃i = r2gij ẋ j = r2 pi .



Complete integrability on metric cone (2)

Radial dynamics is independent of the dynamics of the base
manifold T 1,1 and H̃ is a constant of motion. The Hamilton
equations of motion for H̃ on T 1,1 have the standard form in
terms of a new time variable t̃ given by

dt
d t̃

= r2 .

Concerning the constant of motions, they are the conjugate
momenta (p̃φ1 , p̃φ2 , p̃ψ) associated with the cyclic coordinates
(φ1, φ2, ψ) and two total SU(2) momenta

j̃2i = r4 j2i , i = 1,2 .

Together with the Hamiltonian HC(T 1,1) , they ensure the
complete integrability of the geodesic flow on the metric cone.



Complete integrability on metric cone (3)

Considering a particular level set E of HC(T 1,1), we get for the
radial motion

p2
r = ṙ2 = 2E − 2

r2 H̃ .

The turning point of the radial motion is determined by

ṙ = 0 =⇒ r∗ =

√
H̃
E
.

Projecting the geodesic curves onto the base manifold T 1,1 we
can evaluate the total distance transversed in the Sasaki-
Einstein space between the limiting points as t → −∞ and
t → +∞

d =
√

2H̃
∫ ∞
−∞

dt
r2
∗ + 2E t2 = π .



Complete integrability on metric cone (4)

Note: Radial motion is unbounded and consequently
Hamiltonian HC(T 1,1) does not admit a formulation in terms of
action-angle variables.

Key idea: split the mechanical system into a “radial” and an
“angular” part. The angular part is a compact subsystem
spanned by the set of variables q = (θ1, θ2, φ1, φ2, ψ) which can
be formulated in terms of action-angle variables
(Ii ,Φ0

i ) , i = θ1, θ2, φ1, φ2, ψ. By adding the radial part
r ∈ (0,∞), Hamiltonian HC(T 1,1) can be put in the form

HC(T 1,1) =
1
2

p2
r +

1
r2 H̃(Ii) .

Concerning the action-angle variables (Ii ,Φ0
i ) corresponding to

the compact angular subsystem, they can be determined by a
standard technique.



Complete integrability on metric cone (5)
Let us consider a particular level set E of the energy. Using
complete separability, Hamilton’s principal function can be
written in the form:

S(r ,q, α, t) = S0(r ,q, α)− Et = Sr (r , α) + S̃0(q, α)− Et

= Sr (r , α) +
∑

j=1,2

Sθj (θj , α) +
∑

j=1,2

Sφj (φj , α) + Sψ(ψ, α)− Et

where α is a set of constants of integration.
Hamilton-Jacobi equation is

E =
1
2

(
∂Sr

∂r

)2

+
9

2r2

(
∂Sψ
∂ψ

)2

+
3
r2

∑
i=1,2

{(
∂Sθi

∂θi

)2

+
1

sin2 θi

[(
∂Sφi

∂φi

)
− cos θi

(
∂Sψ
∂ψ

)]2
}



Complete integrability on metric cone (6)

Since the variables (φ1, φ2, ψ) are cyclic, we have

Sφ1 = p̃φ1 · φ1 = αφ1 · φ1 ,

Sφ2 = p̃φ2 · φ2 = αφ2 · φ2 ,

Sψ = p̃ψ · ψ = αψ · ψ ,

where αφ1 , αφ2 , αψ are constants of integration.
The corresponding action variables are:

Iφ1 =
1

2π

∮
∂Sφ1

∂φ1
dφ1 = αφ1 ,

Iφ2 =
1

2π

∮
∂Sφ12

∂φ2
dφ2 = αφ2 ,

Iψ =
1

4π

∮
∂Sψ
∂ψ

dψ = αψ .



Complete integrability on metric cone (7)
Next we deal with the coordinates θi , i = 1,2 .
From Hamilton-Jacobi equation we get(

∂Sθi

∂θi

)2

+
1

sin2 θi

(
αφi − αψ cos θi

)2
= α2

θi
, i = 1,2 ,

where αθi , i = 1,2 are constants.
The corresponding action variables Iθi , i = 1,2, are

Iθi =
1

2π

∮ (
α2
θi
−

(αφi − αψ cos θi)
2

sin2 θi

) 1
2

dθi , i = 1,2 .

The limits of integrations are defined by the roots θi− and θi+ of
the expressions in the square root parenthesis and a complete
cycle of θi involves going from θi− to θi+ and back to θi− .
An efficient technique for evaluating Iθi is to extend θi to a
complex variable zi and interpret the integral as a closed
contour integral in the zi plane.



Complete integrability on metric cone (8)

At the end, we get

Iθi =
(
α2
θi

+ α2
ψ

) 1
2 − αφi , i = 1,2 .

We note that each Si , i = (θ1, θ2, φ1, φ2, ψ) depends on all
action variables Ii . Then the angle variables are

Φ0
i =

∂S̃0

∂Ii
, i = (θ1, θ2, φ1, φ2, ψ) .

Their explicit expressions are quite involved and are not
produced here.



Complete integrability on metric cone (9)
Finally, let us consider the radial part of the Hamilton’s principal
function.
From Hamilton-Jacobi equation have(

∂Sr

∂r

)2

= 2E − 6
r2 (α2

θ1
+ α2

θ2
+

3
2
α2
ψ) ,

and

Sr (r , α) =

∫ r
dr ′
(

2E − 6
r ′2

(α2
θ1

+ α2
θ2

+
3
2
α2
ψ)

) 1
2

.

Thus, the Hamilton’s principal function is

S(E , Ii , r ,Φ0
i ) =

√
2
∫ r

dr ′

√
E − H̃(Ii)

r ′2
+
∑

i

IiΦ0
i ,

where the sum extends over the action-angle variables
i = (θ1, θ2, φ1, φ2, ψ) .



Complete integrability on metric cone (10)

The integral corresponding to the radial motion can be
evaluated and, eventually, we get

Sr (r , Ii) =
√

2E

(√
r2 − r2

∗ − r∗ arctan

√
r2 − r2

∗
r2
∗

)

where the turning point r∗ , in terms of action variables Ii , is

r2
∗ =

3
E

[
(Iθ1 + Iφ1)2 + (Iθ1 + Iφ1)2 − 1

2
I2
ψ

]
.



Complete integrability on resolved metric cone (1)
The metric cone associated with Sasaki-Einstein space T 1,1 is
described by the following equation in four complex variables

4∑
a=1

w2
a = 0 .

Equation of the quadric can be rewritten using a matrixW

W =
1√
2
σawa =

1√
2

(
w3 + iw4 w1 − iw2
w1 + iw2 −w3 + iw4

)
≡
(

X U
V Y

)
where σa are the Pauli matrices for a = 1,2,3 and σ4 is i times
the unit matrix. The radial coordinate is defined by

r2 = tr (W†W) .

In terms of the matrixW, equation of quadric can be written as

detW = 0 , i.e. XY − UV = 0 .



Complete integrability on resolved metric cone (2)
Small resolution (1)

The small resolution is realized replacing det W = 0 by the pair
of equations: (

X U
V Y

)(
λ1
λ2

)
= 0 ,

in which (λ1, λ2) ∈ CP1 are not both zero. Thus, in the region
where λ1 6= 0, the pair (λ1, λ2) is uniquely characterized by the
coordinate λ = λ2/λ1, while in the region where λ2 6= 0 , the
pair (λ1, λ2) is described by the coordinate µ = λ1/λ2.
It turns out to be convenient to introduce a new radial
coordinate

ρ2 ≡ 3
2
γ ,

where the function γ is given by the equation

γ3 + 6 a2 γ2 − r4 = 0 ,

with a the “resolution” parameter. It represents the radius of the
sphere S2 which replaces the point singularity at r2 = 0.



Complete integrability on resolved metric cone (3)
Small resolution (2)

Metric of the resolved conifold (rc) can be written as

ds2
rc = κ−1(ρ) dρ2 +

1
9
κ(ρ)ρ2(dψ + cos θ1 dφ1 + cos θ2 dφ2)2

+
1
6
ρ2(dθ2

1 + sin2 θ1 dφ2
1) +

1
6

(ρ2 + 6 a2)(dθ2
2 + sin2 θ2 dφ2

2) ,

where

κ(ρ) ≡ ρ2 + 9 a2

ρ2 + 6 a2 .

The resolved conifold metric is Ricci flat and has an explicit
SU(2)× SU(2) invariant form. When the resolution parameter
a goes to zero or when ρ→∞, the resolved conifold metric
reduces to the standard conifold metric gC(T 1,1). In fact the
parameter a introduces an asymmetry between the two sphere.



Complete integrability on resolved metric cone (4)
Small resolution (3)

Conjugate momenta (Pρ,Pθ1 ,Pθ2 ,Pφ1 ,Pφ2 ,Pψ) corresponding
to the coordinates (ρ, θ1, θ2, φ1, φ2, ψ) are:

Pρ = κ−1(ρ)ρ̇

Pθ1 =
1
6
ρ2θ̇1

Pθ2 =
1
6

(ρ2 + 6 a2)θ̇2

Pφ1 =
1
6
ρ2 sin2 θ1 φ̇1 +

1
9
κ(ρ)ρ2 cos θ1(cos θ1 φ̇1+cos θ2 φ̇2 +ψ̇)

Pφ2 =
1
6

(ρ2 + 6 a2) sin2 θ2 φ̇2

+
1
9
κ(ρ)ρ2 cos θ2(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇)

Pψ =
1
9
κ(ρ)ρ2(cos θ1 φ̇1 + cos θ2 φ̇2 + ψ̇) .



Complete integrability on resolved metric cone (5)
Small resolution (4)

In terms of them, the Hamiltonian for the geodesic flow is

Hrc =
κ(ρ)

2
P2
ρ +

9
2

1
κ(ρ) ρ2 P2

ψ +
3
ρ2 P2

θ1
+

3
ρ2 + 6 a2 P2

θ2

+
3

ρ2 sin2 θ1
(Pφ1 − cos θ1 Pψ)2

+
3

(ρ2 + 6 a2) sin2 θ2
(Pφ2 − cos θ2 Pψ)2 .

(φ1, φ2, ψ) are still cyclic coordinates and, accordingly, momenta
Pφ1 ,Pφ2 ,Pψ are conserved. Taking into account the symmetry
SU(2)× SU(2) , total angular momenta

J2
1 = P2

θ1
+

1
sin2 θ1

(Pφ1 − cos θ1 Pψ)2 + P2
ψ = ρ4 j21 ,

J2
2 = P2

θ2
+

1
sin2 θ2

(Pφ2 − cos θ2 Pψ)2 + P2
ψ = (ρ2 + 6a2)2 j22 ,

are also conserved.



Complete integrability on resolved metric cone (6)
Small resolution (5)

The set of conserved quantities (Hrc ,Pφ1 ,Pφ2 ,Pψ,J
2
1,J

2
2)

ensures the complete integrability of geodesic motions on the
resolved conifold. As it is expected, for a = 0 we recover the
state of integrability on the standard metric cone of the
Sasaki-Einstein space T 1,1.

Hamilton’s principal function has the form:

S(ρ,q, α, t) =Sρ(ρ, α) +
∑

j=1,2

Sθj (θj , α)

+
∑

j=1,2

Sφj (φj , α) + Sψ(ψ, α)− Et .



Complete integrability on resolved metric cone (7)
Small resolution (6)

Hamilton-Jacobi equation becomes:

E =
1
2
κ(ρ)

(
∂Sρ
∂ρ

)2

+
3
ρ2

(
∂Sθ1

∂θ1

)2

+
3

ρ2 + 6a2

(
∂Sθ2

∂θ2

)2

+
3

ρ2 sin2 θ1

[(
∂Sφ1

∂φ1

)
− cos θ1

(
∂Sψ
∂ψ

)]2

+
3

(ρ2 + 6a2) sin2 θ2

[(
∂Sφ2

∂φ2

)
− cos θ2

(
∂Sψ
∂ψ

)]2

+
9

2κ(ρ)ρ2

(
∂Sψ
∂ψ

)2

.



Complete integrability on resolved metric cone (8)
Small resolution (7)

As before, φ1, φ2, ψ are cyclic coordinates and the evaluation of
Sφ1 ,Sφ2 ,Sψ proceeds as before. Fortunately, the evaluation of
Sθ1 and Sθ2 is again as above.
Concerning the radial part of the Hamilton’s principal function
we get a more intricate equation:

E =
1
2
κ(ρ)

(
∂Sρ
∂ρ

)2

+
9

2κ(ρ)ρ2 I2
ψ +

3
ρ2

[
(Iθ1 + Iφ1)2 − I2

ψ

]
+

3
(ρ2 + 6a2)

[
(Iθ2 + Iφ2)2 − I2

ψ

]
.

This equation can be integrated, but the result is not at all
illuminating to be produced here.
We remark the asymmetry between the contribution to the
Hamiltonian of the action variables associated with the motions
on the two sphere S2. This contrasts with the situation of the
geodesic flow on the metric cone of T 1,1.



Complete integrability on resolved metric cone (9)
Deformation (1)

The deformation of the conifold consists in replacing the apex
by an S3 which is achieved by another modification of equation
of the quadric. The metric cone is deformed to a smooth
manifold described by the equation:

4∑
a=1

w2
a = ε2 ,

where ε is the “deformation” parameter. Equation det W = 0
becomes

detW = −1
2
ε2 .

Set the new radial coordinate

r2 = ε2 cosh τ ,



Complete integrability on resolved metric cone (10)
Deformation (2)

Deformed conifold metric is:

ds2
dc =

1
2
ε

4
3 K (τ)

(
1

3K 3(τ)
(dτ2 + ds2

1) +
cosh τ

2
ds2

2 +
1
2

ds2
3

)
,

where

K (τ) =
(sinh 2τ − 2τ)

1
3

2
1
3 sinh τ

,

and

ds2
1 = (dψ + cos θ1 dφ1 + cos θ2 dφ2)2 ,

ds2
2 = dθ2

1 + dθ2
2 + sin2 θ1 dφ2

1 + sin2 θ2 dφ2
2 ,

ds2
3 = 2

(
sinψ(dφ1 dθ2 sin θ1 + dφ2 dθ1 sin θ2)

+ cosψ(dθ1 dθ2 − dφ1 dφ2 sin θ1 sin θ2)
)
.



Complete integrability on resolved metric cone (11)
Deformation (3)

In the limit r → ε, on surfaces r2 = const., the deformed
conifold metric reduces to the S3 surface metric.

The coordinate ψ ceases to be a cyclic coordinate and only φ1
and φ2 continue to be cyclic. Therefore the number of the first
integrals of the corresponding Hamiltonian is insufficient to
ensure the integrability of the geodesic flow.



Outlook

I Sasaki-Ricci flow/soliton
I Deformations of Sasaki structures
I Contact Hamiltonian dynamics on higher dimensional toric

Sasaki-Einstein spaces
I Time-dependent Hamilton function
I Dissipative Hamiltonian systems


