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MAIN IDEA:
General Relativity emerges from Quantum Mechanics with many d.o.f.

GR = lim
N→∞

QM

(just like Thermodynamics emerges from Classical Mechanics with many d.o.f.)

OUTLINE:

I I. SPATIAL METRIC from QUANTUM INFORMATION
I define statistical ensembles using information as constraint
I derive a spatially covariant description of quantum information

I II. SPACE-TIME METRIC from QUANTUM COMPUTATION
I define a dual theory description of computational complexities
I derive a space-time covariant description of quantum comp.

I III. GRAVITY from NON-EQUILIBRIUM THERMODYNAMICS
I define thermodynamic variables in the limit of local equilibrium
I derive an equation for a non-equilibrium entropy production
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WAVE FUNCTION FOR QUBITS, QUTRITS AND QUDITS
I Consider a vector in Hilbert space with preferred t.p. factorization

|ψ〉 =

2D−1∑
X=0

ψX|X〉 ≡
2D−1∑
X=0

ψX
D⊗

i=1

|Xi〉

where Xi ∈ {0, 1} for qubits, Xi ∈ {0, 1, 2} for qutrits, etc.
I Then components ψX’s define a wave-function representation of |ψ〉
I For qubits it is useful to think of ψX as a function on D dim. lattice

I For qutrits the periodicity of the lattice is 3 (or in general k for qudits).
I In all cases it is convenient to replace the discrete Xi with continuous xi,

differences ∆ with differentiations ∂i, sums
∑

with integrals
∫

, etc.
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STATISTICAL DEPENDENCE OR ENTANGLEMENT

I Question: What is a good measure of entanglement of variables i and j?
I Related Question: What is a good measure of statistical dependence

between i and j described by distribution P(~x) ≡ ψ∗(~x)ψ(~x)?
I For statistically dependent random variables we know that

P(~x) 6= P(x1)P(x2)...P(xD) (1)

or
log(P(~x)) 6= log(P(x1)) + log(P(x2)) + ...+ log(P(xD)).

I Then if we expand the left hand side around a global maxima

log(P(~x)) ≈ log(P(~y))− 1
2

(xi − yi)Σij(xi − yi) + ... (2)

then a good measure of statistical dependence is

Σij ≡ −2
[

∂2

∂xi∂xj log(P(~x))

]
~x=~y

(3)
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FISHER INFORMATION MATRIX

I More generally the Hessian matrix (which is a local quantity)

Σij(~x) ≡ −2
∂2

∂xi∂xj log(P(~x)) (4)

allows us to approximate the distribution as a sum of Gaussians

P(~x) ∝
∑

m

exp
(
−1

2

(
xi − yi

m

)
Σij(~ym)

(
xj − yj

m

))
(5)

I To obtain a measure of statistical dependence between i’s and j’s qubits
(or subsystems) the quantity must be summed (or integrated) over
different values with perhaps different weights. One useful choice is

Aij ≡ 1
4

∫
dNx P(~x)Σij(~x) = −1

4

∫
dNx P(~x)

∂2

∂xi∂xj log(P(~x))

where the factor of 1/4 is introduced for future convenience.
I It can be shown that Aij is the so-called Fisher information matrix

obtained from shifts of coordinates ~x.
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FUBINI-STUDY METRIC

I For periodic/vanishing boundary conditions the matrix reduces to

Aij =

∫
dNx

∂
√

P(~x)

∂xi

∂
√

P(~x)

∂xj (6)

I Then one can try to define information matrix

Aij =

∫
dNx

∂|ψ(~x)|
∂xi

∂|ψ(~x)|
∂xj (7)

but it does not measure well certain quantum entanglements.
I A better object is a straightforward generalization, i.e.

Aij =

∫
dNx

∂ψ∗(~x)

∂xi

∂ψ(~x)

∂xj . (8)

which is closely related to the so-called Fubini-Study metric.
I We will refer to Aij (for both statistical and quantum systems) as

information matrix.



METRIC FROM INFORMATION SPACE-TIME FROM COMPUTATION GRAVITY FROM THERMODYNAMICS

INFOTON FIELD OR UNNORMALIZED WAVE FUNCTION

I Consider a dual field ϕ(~x) (we shall call infoton) in the
sample/configuration space defined (for now) as

ϕ(~x) ∝ ψ(~x) (9)

and then the information matrix is

Aij ∝
∫

dNx
∂ϕ∗(~x)

∂xi

∂ϕ(~x)

∂xj . (10)

I Next step is to define distributions over |ψ〉 and so one can think of this
as “2nd quantization”, i.e. prob. distribution over prob. amplitudes.

I More precisely, we shall construct statistical ensembles P[ϕ] that would
define probabilities of pure states

P[|ψ〉] =

∫
ϕ∝ψ
DϕDϕ∗P[ϕ] (11)

I So we are now dealing with mixed states, but instead of density
matrices we will work with statistical ensembles described by P[ϕ].
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STATISTICAL ENSEMBLE OVER WAVE FUNCTIONS
I What we really want is machinery to define distributions over

“microscopic” quantum states subject to “macroscopic” constraints.
I For example, we might want to define a statistical ensemble over

infoton ϕ such that the (expected) information matrix is〈
Aij
〉

= Āij (12)

for a given Hermitian matrix Āij.
I Statistical ensembles are usually defined using partition functions

Z =

∫
DϕDϕ∗ exp (−S[ϕ]) (13)

I If the theory is local then the (Euclidean) action S is given by an integral
over a local function L of fields and its derivatives, e.g.

S[ϕ] =

∫
dNx

(
gij ∂ϕ

∗(~x)

∂xi

∂ϕ(~x)

∂xj + λϕ∗(~x)ϕ(~x)

)
(14)

where the values of gij do not depend on ~x and the “mass-squared”
constant λ must be chosen so that the infoton field ϕ (which is
proportional to wave-functions ψ) is on average normalized.
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INFORMATION TENSOR

I For more general ensembles (e.g. over sums of Gaussians) gij can
depend on coordinates ~x and thus to play the role of a metric tensor.

I To make the expression covariant we will also add
√
|g| to the volume

integral and replace partial derivatives with covariant derivatives, i.e.

S =

∫
dDx

√
|g|
(

gij(~x)∇iϕ
∗(~x)∇jϕ(~x) + λ(~x)ϕ∗(~x)ϕ(~x)

)
(15)

I Then, we can define a covariant information tensor as

Aij(~x) ≡ ∇iϕ
∗(~x)∇jϕ(~x). (16)

and a covariant probability scalar

N (~x) ≡ ϕ∗(~x)ϕ(~x). (17)

I Note that both Aij(~x) andN (~x) are local quantities in configuration
space.
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STRESS TENSOR

I These two quantities can be used to express the stress tensor

Tij = ∇(iϕ
∗∇j)ϕ+ gij

(
gkl∇kϕ

∗∇lϕ+ λϕ∗ϕ
)

(18)

= 2A(ij) + gij

(
gklAkl + λN

)
(19)

where A(µν) ≡ 1
2 (Aµν + Aµν).

I Then for a given expected information tensor Ā(ij) and probability
density N̄ , the macroscopic parameters gij(~x) and λ(~x) are to be chosen
such that

〈N〉 = N̄ (20)

and 〈
Tij
〉

= 2Ā(ij) + gij

(
gklĀkl + λN̄

)
. (21)

I Note that the corresponding free energy depends on only
“macroscopic” parameters gij(~x) and λ(~x) (as it should) , i.e.

F [gij, λ] ≡ − log(Z[gij, λ]) = − log
(∫
DϕDϕ∗ exp

(
−S[ϕ, gij, λ]

))
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ACTION-COMPLEXITY CONJECTURE

I Once again, consider a quantum system of D qubits.
I All states are points on 2D dim. unit sphere separated by distance O(1)

if you were allowed to move along geodesics.
I Now imagine that you are only allowed to move in O(D2) orthogonal

directions out of O(2D).
I More precisely, at any point you are allowed to only apply O(D) of one-

qubit gates or O(D2) of two- qubit gates.
I This is like playing a very high-dimensional maze with many walls and

very few pathways.
I Question: What is the shortest distance (also known as computational

complexity) connecting an arbitrary pair of points on the unit sphere?
I Action-complexity conjecture: There exist a dual field theory whose action

equals to computational complexity of the shortest quantum circuit connecting
any pair of states,

C(|ψout〉, |ψin〉) = S[ϕ] (22)

where ϕ is a collective notation for all degrees of freedom.
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DUAL THEORIES
I Consider dual theories with d.o.f. represented by infoton field, i.e.

C(|ψout〉, |ψin〉) =

∫ T

0
dt L

(
ϕX(t),

dϕX(t)
dt

)
. (23)

I We set initial/final conditions

|ψin〉 =
∑

X

ψX
in|X〉 ∝

∑
X

ϕX(0)|X〉 (24)

|ψout〉 =
∑

X

ψX
out|X〉 ∝

∑
X

ϕX(T)|X〉,

and demand that the (yet to be discovered) dual theory satisfies the
following symmetries/constrains:

I States remain (approximately) normalized, i.e.∑
X

ϕX(t)ϕX(t) ≈ 1 (25)

I Theory is invariant under permutations of bits, i.e. interactions
depend only on Hamming distance h(I, J) between strings of bits I
and J, e.g. h(0, 7) = 3, h(2, 6) = 1.
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DUAL LAGRANGIAN

I Then the leading terms of the Lagrangian can be written as

L(ϕX, ϕ̇X) = α
∑

X

ϕ̇Xϕ̇
X + λ

∑
X

ϕXϕ
X +

∑
X,Y

f (h(X,Y))ϕXϕ
Y + ... (26)

where f (h(X,Y)) is some function of Hamming distance h(X,Y).
I And we arrive at a path integral expression

Z(|ψout〉, |ψin〉) =

∫ |ψout〉=ϕX(T)|X〉

|ψin〉=ϕX(0)|X〉
d2D

ϕ∗d2D
ϕ ei

∫ T
0 dt(αϕ̇Xϕ̇

X+λϕXϕ
X+f X

YϕXϕ
Y)

where the Einstein summation convention is assumed.
I Note that:

I f X
Y ≡ f (h(X,Y)) in computational basis and to transform to other

basis it must be treated as a rank (1, 1) tensor under U
(
2D).

I Roughly speaking, we expect the function f (h) to quickly vanish
for h > 2, i.e. penalizing more than two q-bit gates.

I It will be convenient to denote the three relevant constants as
β ≡ f (0), γ ≡ f (1) and δ ≡ f (2) (in addition to α defined above).
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LATTICE FIELD THEORY
The path integral can also be written as a quantum field theory path integral
on D dimensional torus with only 2D lattice points

Then in a continuum limit the path integral would be given by

Z(|ψout〉, |ψin〉) =

∫
Dϕ∗Dϕ exp

(
i
∫ T

0
dt
∫

dDxL̃(ϕ(x), ∂µϕ(x))

)
(27)

where tildes denote spacetime quantities and µ labels D + 1 dimentions.
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LAGRANGIAN DENSITY
I After some math we arrive at Klein-Gordon theory

L̃(ϕ(~x), ∂µϕ(~x) = g̃µν∂µϕ∗(~x)∂νϕ(~x)−m2ϕ∗(~x)ϕ(~x) (28)

where the “mass’-squared’

m2 ≡ −
(
β + Dγ +

D(D− 1)

2
δ

)
l−D−1 (29)

and the inverse “metric” is

g̃00 ≡ αl1−D (30)

g̃ii ≡ −1
2

(γ + (D− 1)δ) l1−D (31)

g̃ij ≡ 1
2
δl1−D, (32)

where i, j ∈ {1, ...,D} and i 6= j.
I For the path integral to be finite we need the mass squared to be

positive and all but one eigenvalues of the metric to be negative, e.g.

α > 0; γ > 0; δ > − γ
D

; β < −Dγ − D(D− 1)

2
δ.
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LOCAL COMPUTATIONS
I More generally the infoton field theories defined by Lagrangian

L̃(ϕ(~x), ∂µϕ(~x) = g̃µν(~x)∂µϕ
∗(~x)∂νϕ(~x)− λ(~x)ϕ∗(~x)ϕ(~x) (33)

can give a dual description to the theories of computation of qudits

I Computations in each hypercube are described by one/two qubit gates
but these computations share each other’s memory on boundaries.

I The qubit computers associated with each hypercube run separately,
but exchange information and thus the results of computations.



METRIC FROM INFORMATION SPACE-TIME FROM COMPUTATION GRAVITY FROM THERMODYNAMICS

INFORMATION-COMPUTATION TENSOR
I Now that we have a fully covariant action we can look at a covariant

generalization of the information tensor, i.e.

Aµν ≡ ∇νϕ∗∇µϕ. (34)

I The tensor Aµν is related to the the energy momentum tensor

Tµν = −2A(µν) + g̃µν
(

g̃αβAαβ
)

(35)

which implies that it should satisfy the following equation

∇ν
(
A(µν) −

1
2
Ag̃µν

)
= 0 (36)

I Space-space components, i.e. ij, provide a good measure of
informational dependence between (k-local and x-local) subsystems.

I Space-time component, i.e. 0i, measures the amount that a given qubit i
is contributing to the computations (zero if∇iϕ or∇0ϕ vanishes)

I Thus it is useful to think of 00 as a “density of computations” and of 0i
as a “flux of computations”, which together with ij form a generally
covariant information-computation tensor Aµν (defined for a network
of parallel computers or on a D dimensional dual space-time).
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EMERGENT GRAVITY
I Let us go back to “spatial” partition function

Z =

∫
DϕDϕ∗ exp (−S[ϕ]) (37)

described by the action with only spatial covariance

S =

∫
dDx

√
|g|
(

gij(~x)∇iϕ
∗(~x)∇jϕ(~x) + λ(~x)ϕ∗(~x)ϕ(~x)

)
(38)

I The corresponding free energy can be expanded as

F [gij, λ, ~] ≡ −~ log(Z[gij, λ, ~]) ≈ (39)

≈
∫

dDx
√
|g|
(

gij 〈Aij
〉

+ λ 〈N〉
)
− S.

I If we turn on a random, but unitary dynamics of wave functions then
the infoton field should also evolve accordingly.

I But if we want to keep the form of the ensemble to remain the same,
then the macroscopic parameters gij(~x) and λ(~x) must evolve as well.

I And if so, can one describe the emergent dynamics of gij(~x) and λ(~x)
using dynamical equations, e.g. Einstein equations, corrections?



METRIC FROM INFORMATION SPACE-TIME FROM COMPUTATION GRAVITY FROM THERMODYNAMICS

THERMODYNAMIC VARIABLES

I We define (local) thermodynamic variables

information tensor aij ≡
〈
Aij
〉

metric tensor gij ≡ gij

particle number scalar n ≡ 〈N〉
chemical potential scalar m ≡ λ

entropy scalar s ≡ S∫
dDx
√
|g|

free energy scalar f ≡
(
gijaij + mn

)
− s (40)

I Equation (40) together with the First Law of thermodynamics

0 = mdn + gijdaij − ds (41)

gives us the Gibbs-Duhem Equation

df = ndm + aijdgij. (42)
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ONSAGER TENSOR
I Non-equilibrium entropy production (which is to be extremized)

S[g, ϕ] ≡
∫

dD+1x
√
|g|
(
L(ϕ, g)− 1

2κ
R(g) + Λ

)
(43)

I By following the standard prescription we expand entropy production

1
2κ

R = gαβ,µJ
µαβ (44)

where the generalized forces are taken to be

gαβ,µ ≡
∂gαβ
∂xν

(45)

and fluxes are expanded to the linear order in generalized forces

Jµαβ = Lµν αβ γδgγδ,ν . (46)

and thus
1

2κ
R = Lµν αβ γδgαβ,µgγδ,ν . (47)

where Lµν αβ γδ is the Onsager tensor.
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ONSAGER RECIPROCITY RELATIONS

I Onsager relations force us to only consider Onsager tensors that are
symmetric under exchange (µ, α, β)↔ (ν, γ, δ), i.e.

Lµν αβ γδ = Lνµ βα δγ (48)

I To illustrate the procedure, let us first consider a tensor

Lµν αβ γδ =
1

2κ

(
gανgβδgµγ + gαγgβνgµδ − gαγgβδgµν

)
(49)

for which the flux can be rewritten as

Jµαβ =
1
κ
gαγgβδΓµγδ (50)

where Γµγδ are Christoffel symbols and κ is some constant.
I If we inset it back into the entropy functional we get∫

dD+1x
√
|g| 1

2κ
R =

1
κ

∫
dD+1x

√
|g|gµν

(
Γαµν,α + ΓβµνΓααβ

)
(51)

I Note quite what one needs for GR to emerge.
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GENERAL RELATIVITY
I The overall space of Onsager tensors is pretty large, but it turns out that

a very simple choice leads to general relativity, i.e.

Lµν αβ γδ =
1

8κ

(
gανgβδgµγ + gαγgβνgµδ − gαγgβδgµν − gαβgγδgµν

)
.

I It has a lot more symmetries and as a result of these symmetries we are
led to a fully covariant theory of general relativity∫

dD+1x
√
|g| 1

2κ
R =

1
κ

∫
dD+1x

√
|g|gµν

(
Γαν[µ,α] + Γβν[µΓαα]β

)
I By varying the full action with respect to metric (what is equivalent to

minimization of entropy production) we arrive at the Einstein equations

Rµν −
1
2
Rgµν + Λgµν = κ 〈Tµν〉 (52)

where the Ricci tensor is

Rµν ≡ 2
(

Γαν[µ,α] + Γβν[µΓαα]β

)
(53)

I Of course, this result is expected to break down far away from
equilibrium (dark matter?) What about inflation and dark energy?
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SUMMARY

I I. SPATIAL METRIC from QUANTUM INFORMATION
I defined statistical ensembles using information as constraint
I derived a spatially covariant description of quantum information

I II. SPACE-TIME METRIC from QUANTUM COMPUTATION
I defined a dual theory description of computational complexities
I derived a space-time covariant description of quantum comp.

I III. GRAVITY from NON-EQUILIBRIUM THERMODYNAMICS
I defined thermodynamic variables in the limit of local equilibrium
I derived an equation for a non-equilibrium entropy production
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