Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

* Department of Physics, Sofia University,

[†] ITP, Vienna University of Technology

Field Theory and the Early Universe – BW2018, Nis, Serbia, 10-14 June, 2018

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

This project was partially supported by BNSF grant DN 18/1, SU Research Fund grants 85/2018, ??/2018, NORDITA Program "Correlation functions and solvable models" and SEENET-TMP.

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モン・ビー もんぐ

Motivation

Integrable Structures in Low-dimensional Holography and Cosmology

$\mathsf{R.C.Rashkov}^{\star\,\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・田・・田・ 日・ ひゃぐ

Motivation

Holographic Entanglement Entropy (EE) of excited states and theit representations

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

イロト (同) イヨト (ヨ) ののの

Motivation

- Holographic Entanglement Entropy (EE) of excited states and theit representations
- Integrable structures in Low-dimesional Holography

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Motivation

- Holographic Entanglement Entropy (EE) of excited states and theit representations
- Integrable structures in Low-dimesional Holography
- Higher spin theories, higher projective invariants and W-geometry

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Motivation

- Holographic Entanglement Entropy (EE) of excited states and theit representations
- Integrable structures in Low-dimesional Holography
- Higher spin theories, higher projective invariants and W-geometry
- Bulk reconstruction and consequences

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Motivation

- Holographic Entanglement Entropy (EE) of excited states and theit representations
- Integrable structures in Low-dimesional Holography
- Higher spin theories, higher projective invariants and W-geometry
- Bulk reconstruction and consequences
- Conclusions

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Conceptual issues:

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

 \checkmark If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

✓ If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!
✓ In view of the above, should we think of space-time, ergo gravity as an emergent phenomenon?

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

The first questions to ask:

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

The first questions to ask:

• How to match the degrees of freedom on both sides of duality ?

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Conceptual issues:

 \checkmark If gravity(string) theory is dual to certain gauge theory, it should be possible to reconstruct any of them from the other!

 \checkmark If the above statement is true, the (quantum) gravity should be encoded in the boundary theory!

The first questions to ask:

• How to match the degrees of freedom on both sides of duality ?

• How exactly the information from the bulk is encoded in the boundary theory ?

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Let us have a CFTin a state |Ψ⟩ defined on a spacetime geometry B. Suppose the state |Ψ⟩ is associated with the geometry of a dual theory in a space M_Ψ whose boundary is B.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

- Let us have a CFTin a state |Ψ⟩ defined on a spacetime geometry B. Suppose the state |Ψ⟩ is associated with the geometry of a dual theory in a space M_Ψ whose boundary is B.
- Let us consider a spacial subsystem A of the CFT and let S_A is its entropy , i.e. it measures the entanglement of the fields in A with the rest of the system.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

- Let us have a CFTin a state |Ψ⟩ defined on a spacetime geometry B. Suppose the state |Ψ⟩ is associated with the geometry of a dual theory in a space M_Ψ whose boundary is B.
- Let us consider a spacial subsystem A of the CFT and let S_A is its entropy , i.e. it measures the entanglement of the fields in A with the rest of the system.

Thus:

$$S(A) = \frac{1}{4G_N} \mathrm{Area}(\tilde{A}),$$

(1)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*[†]

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

- Let us have a CFTin a state |Ψ⟩ defined on a spacetime geometry B. Suppose the state |Ψ⟩ is associated with the geometry of a dual theory in a space M_Ψ whose boundary is B.
- Let us consider a spacial subsystem A of the CFT and let S_A is its entropy , i.e. it measures the entanglement of the fields in A with the rest of the system.

Thus:

$$S(A) = \frac{1}{4G_N} \mathrm{Area}(\tilde{A}),$$

• The surface \tilde{A} is co-dimension 2 extremal surface with the same boundary as A!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

(1)

- Let us have a CFTin a state |Ψ⟩ defined on a spacetime geometry B. Suppose the state |Ψ⟩ is associated with the geometry of a dual theory in a space M_Ψ whose boundary is B.
- Let us consider a spacial subsystem A of the CFT and let S_A is its entropy , i.e. it measures the entanglement of the fields in A with the rest of the system.

Thus:

$$S(A) = \frac{1}{4G_N} \operatorname{Area}(\tilde{A}), \qquad ($$

• The surface \tilde{A} is co-dimension 2 extremal surface with the same boundary as A!

• The surface \tilde{A} is homologous to A, where $A \cup A$ is a boundary of d-dimensional space-like region in M_{Ψ} ! Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

(1)

When the Ryu-Takayanagi formula applies, in 2d S(u, v) is the entanglement entropy of the interval (u, v).

1

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 匣 - 釣�?

When the Ryu-Takayanagi formula applies, in 2d S(u, v) is the entanglement entropy of the interval (u, v).

Figure 1: The choice of intervals.

For intervals

$$A = (u - du, u) \quad \text{and} \quad B = (u, v) \quad \text{and} \quad C = (v, v + dv),$$

strong subadditivity leads to:

$$S(u - du, v) + S(u, v + dv)$$

- $S(u, v) - S(u - du, v + dv) \approx \frac{\partial^2 S(u, v)}{\partial u \partial v} \ge 0.$ (2)

1

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西下・西下・西下・ 日・ シタクト

When the Ryu-Takayanagi formula applies, in 2d S(u, v) is the entanglement entropy of the interval (u, v).

Figure 1: The choice of intervals.

For intervals

$$A=(u-du,u) \quad \text{and} \quad B=(u,v) \quad \text{and} \quad C=(v,v+dv),$$

strong subadditivity leads to:

$$S(u - du, v) + S(u, v + dv)$$

- $S(u, v) - S(u - du, v + dv) \approx \frac{\partial^2 S(u, v)}{\partial u \partial v} \ge 0.$ (2)

• Here S(u, v) is the length of the geodesic connecting the boundary points (u, v) (on the cutoff surface).

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ● のへで

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

• The Renyi entropy:

Using the replica trick method, the Rényi entropy for the vacuum is given by

$$\exp((1-n)S^{(n)}) = \langle \Phi_+(z_1)\Phi_-(z_2)\rangle = \frac{1}{(z_1-z_2)^{2h_n}},$$

where twist operators $\Phi_{\pm}(z)$ have dimensions $(h_n, \bar{h}_n) = c/24(n - 1/n, n - 1/n).$ The entanglement entropy: taking the limit $n \to 1$ of $S^{(n)}$

$$S_{vac} = \lim_{n \to 1} S^{(n)} = \lim_{n \to 1} \log(z_1 - z_2)^{-2h_n} = \frac{c}{12} \log \frac{(z_1 - z_2)}{\delta^2}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• The Renyi entropy:

Using the replica trick method, the Rényi entropy for the vacuum is given by

$$\exp((1-n)S^{(n)}) = \langle \Phi_+(z_1)\Phi_-(z_2)\rangle = \frac{1}{(z_1-z_2)^{2h_n}},$$

where twist operators $\Phi_{\pm}(z)$ have dimensions $(h_n, \bar{h}_n) = c/24(n - 1/n, n - 1/n).$ The entanglement entropy: taking the limit $n \to 1$ of $S^{(n)}$

$$S_{vac} = \lim_{n \to 1} S^{(n)} = \lim_{n \to 1} \log(z_1 - z_2)^{-2h_n} = \frac{c}{12} \log \frac{(z_1 - z_2)}{\delta^2}.$$

• For excited states $|f\rangle = U_f |0\rangle$ the calculation of the Rényi entropy goes analogously

$$\begin{split} \exp\Bigl((1-n)S^{(n)}_{ex}\Bigr) &= \Bigl(\frac{df}{dz}\Bigr)_{z_1}^{-h_n} \Bigl(\frac{df}{dz}\Bigr)_{z_2}^{-h_n} \\ & \Bigl(\frac{d\bar{f}}{d\bar{z}}\Bigr)_{\bar{z}_1}^{-\bar{h}_n} \Bigl(\frac{d\bar{f}}{d\bar{z}}\Bigr)_{\bar{z}_2}^{-\bar{h}_n} \langle 0|\Phi_+(f(z_1))\Phi_-(f(z_2))|0\rangle, \end{split}$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 匣 - 釣�?

• The Renyi entropy:

Using the replica trick method, the Rényi entropy for the vacuum is given by

$$\exp((1-n)S^{(n)}) = \langle \Phi_+(z_1)\Phi_-(z_2)\rangle = \frac{1}{(z_1-z_2)^{2h_n}},$$

where twist operators $\Phi_{\pm}(z)$ have dimensions $(h_n, \bar{h}_n) = c/24(n - 1/n, n - 1/n).$ The entanglement entropy: taking the limit $n \to 1$ of $S^{(n)}$

$$S_{vac} = \lim_{n \to 1} S^{(n)} = \lim_{n \to 1} \log(z_1 - z_2)^{-2h_n} = \frac{c}{12} \log \frac{(z_1 - z_2)}{\delta^2}.$$

• For excited states $|f\rangle = U_f |0\rangle$ the calculation of the Rényi entropy goes analogously

$$\begin{split} \exp\Bigl((1-n)S^{(n)}_{\varepsilon x}\Bigr) = & \Bigl(\frac{df}{dz}\Bigr)_{z_1}^{-h_n} \Bigl(\frac{df}{dz}\Bigr)_{z_2}^{-h_n} \\ & \Bigl(\frac{d\bar{f}}{d\bar{z}}\Bigr)_{\bar{z}_1}^{-\bar{h}_n} \Bigl(\frac{d\bar{f}}{d\bar{z}}\Bigr)_{\bar{z}_2}^{-\bar{h}_n} \langle 0|\Phi_+(f(z_1))\Phi_-(f(z_2))|0\rangle, \end{split}$$

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \delta^2}{(f(z_1) - f(z_2))^2} \right|.$$
(3)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective nvariants and N-geometry

Higher spin holography and more

A second way: Wilson line anchored at the bdy

The logic of the considerations:

 $e^{S_{EE}} = G(\text{geodesic length}) = \text{Wilson line} = \langle \text{mat. element} \rangle$, where the geodesic and the Wilson line end at the boundary of AdS space.

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

A second way: Wilson line anchored at the bdy

The logic of the considerations:

 $e^{S_{EE}}=G({\rm geodesic\ length})={\rm Wilson\ line}=\langle {\rm mat.\ element}\rangle,$ where the geodesic and the Wilson line end at the boundary of AdS space.

The computations go as follows:

► Use CS formulation of 3d gravity ;

Choose a convenient basis. In our case we choose

$$L^{1} \cong L_{-1} = \partial_{x}; \ L^{0} \cong L_{0} = x\partial_{x} + h; \ L^{-1} \cong L_{1} = \frac{1}{2}x^{2}\partial_{x} + hx,$$

acting on holomorphic functions of the auxiliary variable x in representation of spin h with $A_{z|y=0} = L^1 + \frac{12}{c}T(z)L^{-1}$.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

A second way: Wilson line anchored at the bdy

The logic of the considerations:

 $e^{S_{EE}}=G({\rm geodesic\ length})={\rm Wilson\ line}=\langle {\rm mat.\ element}\rangle,$ where the geodesic and the Wilson line end at the boundary of AdS space.

The computations go as follows:

Use CS formulation of 3d gravity ;

Choose a convenient basis. In our case we choose

$$L^{1} \cong L_{-1} = \partial_{x}; \ L^{0} \cong L_{0} = x\partial_{x} + h; \ L^{-1} \cong L_{1} = \frac{1}{2}x^{2}\partial_{x} + hx,$$

acting on holomorphic functions of the auxiliary variable x in representation of spin h with $A_{z|y=0} = L^1 + \frac{12}{c}T(z)L^{-1}$.

Define a generic Wilson line in this setup

$$W_h(z_f; z_i) = \int dx \, |h\rangle P\left\{ e^{\int_{z_i}^{z_f} dz A_z^a(z) L_x^a} \right\} \langle x|.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

▶ Wilson lines, bOPE and OPE blocks: (see 1612.06385)

Matrix elements of an open Wilson line with primary operators at the endpoints

At general c, a Wilson line with primary endpoints can be written in the compact form

$$\langle h|W(z_f,z_i)|h\rangle = \left(e^{\int_{z_i}^{z_f} dz \frac{12T(z)}{c} x_T(z)} \frac{1}{x_T(z_i)^2}\right)^h,$$

subject to

$$-x'_{T}(z) = 1 + \frac{6T(z)}{c}x_{T}^{2}(z), \qquad x_{T}(z_{f}) = 0, \quad (4)$$

where the function $x_T(z)$ is defined by this differential equation.

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

The uniformizing w-coordinates are connected to the Wilson line

$$\frac{1}{x_T(z)} = \frac{w''(z)}{2w'(z)} - \frac{w'(z)}{w(z) + C},$$

with bdy condition $C = -w(z_f)$. We therefore find

Conformal block in the presence of heavy state using Wilson line)

$$\langle h|W(z_f,z_i)|h\rangle = \lim_{C \to -w(z_f)} \left(e^{-2\int_{z_i}^{z_f} dz \frac{x'_T(z)+1}{x_T(z)}} \frac{1}{x_T(z_i)^2} \right)^h = \left(\frac{w'(z_f)w'(z_i)}{(w(z_f)-w(z_i))^2} \right)^h,$$

exactly reproducing the vacuum Virasoro block for an arbitrary heavy background .

- In the case of Higher spin theories an approach based on skew-tau functions has been used, see 1602.06233.

Integrable Structures in Low-dimensional Holography and Cosmology

$$R.C.Rashkov^{*\dagger}$$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• The entanglement entropy is given by

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \,\delta^2}{(f(z_1) - f(z_2))^2} \right|.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov $*^{\dagger}$

Outline

(5)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モン・ビー もんぐ

• The entanglement entropy is given by

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \,\delta^2}{(f(z_1) - f(z_2))^2} \right|.$$

• The difference between vacuum entanglement and that of excited states is

$$S_{vac} - S_{ex} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \bar{f}'(\bar{z_1}) \bar{f}'(\bar{z_2}) (z_1 - z_2)^2}{(f(z_1) - f(z_2)^2 (\bar{f}(\bar{z_1}) - \bar{f}(\bar{z_2}))^2} \right|$$

$R.C.Rashkov^{*\dagger}$

Outline

(5)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

イロト (同) イヨト (ヨ) ののの

• The entanglement entropy is given by

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \,\delta^2}{(f(z_1) - f(z_2))^2} \right|.$$

• The difference between vacuum entanglement and that of excited states is

$$S_{vac} - S_{ex} = \frac{c}{12} \log \left| \frac{f'(z_1)f'(z_2)\bar{f}'(\bar{z_1})\bar{f}'(\bar{z_2})(z_1 - z_2)^2}{(f(z_1) - f(z_2)^2(\bar{f}(\bar{z_1}) - \bar{f}(\bar{z_2}))^2} \right|$$

• Direct calculations show that $(f'(z) \neq 0)$ the expansion about z is

$$\frac{f'(z)f'(w)}{(f(z) - f(w))^2} = \frac{1}{(z - w)^2} + \frac{1}{6}S(f)(z)$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(5)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina
• The entanglement entropy is given by

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \,\delta^2}{(f(z_1) - f(z_2))^2} \right|.$$

• The difference between vacuum entanglement and that of excited states is

$$S_{vac} - S_{ex} = \frac{c}{12} \log \left| \frac{f'(z_1)f'(z_2)\bar{f}'(\bar{z}_1)\bar{f}'(\bar{z}_2)(z_1 - z_2)^2}{(f(z_1) - f(z_2)^2(\bar{f}(\bar{z}_1) - \bar{f}(\bar{z}_2))^2} \right|$$

• Direct calculations show that $(f'(z) \neq 0)$ the expansion about z is

$$\frac{f'(z)f'(w)}{\left(f(z) - f(w)\right)^2} = \frac{1}{(z - w)^2} + \frac{1}{6}S(f)(z) + \frac{1}{12}S'(f)(z)(z - w) +$$
(6)

where S(f) denotes the Schwarzian derivative. Some (very incomplete list of) references: hep-th/9403108, hep-th/0405152, 1604.05308,1604.03110, 1606.03307 Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

(5)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

・ロト・西ト・ヨト・西・シック

• The entanglement entropy is given by

$$S_{ex} = \lim_{n \to 1} S_{ex}^{(n)} = \frac{c}{12} \log \left| \frac{f'(z_1) f'(z_2) \,\delta^2}{(f(z_1) - f(z_2))^2} \right|.$$

• The difference between vacuum entanglement and that of excited states is

$$S_{vac} - S_{ex} = \frac{c}{12} \log \left| \frac{f'(z_1)f'(z_2)\bar{f}'(\bar{z}_1)\bar{f}'(\bar{z}_2)(z_1 - z_2)^2}{(f(z_1) - f(z_2)^2(\bar{f}(\bar{z}_1) - \bar{f}(\bar{z}_2))^2} \right|$$

• Direct calculations show that $(f'(z) \neq 0)$ the expansion about z is

$$\frac{f'(z)f'(w)}{\left(f(z) - f(w)\right)^2} = \frac{1}{(z - w)^2} + \frac{1}{6}S(f)(z) + \frac{1}{12}S'(f)(z)(z - w) + \frac{1}{12}S'(f)(z - w) + \frac{1}{12}S$$

where S(f) denotes the Schwarzian derivative. Some (very incomplete list of) references: hep-th/9403108, hep-th/0405152, 1604.05308,1604.03110, 1606.03307 \Rightarrow Next issue: study of the detailed structure of (5) Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(5)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

• A simple observation: the *exact* expression for entanglement entropy satisfies the Louville field equation:

$$\delta^2 \frac{\partial^2 S_{ex}(f)}{\partial u \partial v} = \frac{c}{6} \exp\left(-\frac{12}{c} S_{ex}(f)\right).$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(7)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

• A simple observation: the *exact* expression for entanglement entropy satisfies the Louville field equation:

$$\delta^2 \frac{\partial^2 S_{ex}(f)}{\partial u \partial v} = \frac{c}{6} \exp\left(-\frac{12}{c} S_{ex}(f)\right).$$

• Let f be a nonconstant meromorphic function on a domain D in the complex plane. For $z \in D$ with $f(z) \neq \infty$, $f'(z) \neq 0$, we consider the quantity

$$G(z+w,z) = \frac{f'(z)}{f(z+w) - f(z)} = \frac{1}{w} - \sum_{n=1}^{\infty} \psi_n[f](z)w^{n-1}.$$

The quantities $\psi_n[f](z)$ are called Aharonov invariants.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(7)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

• A simple observation: the *exact* expression for entanglement entropy satisfies the Louville field equation:

$$\delta^2 \frac{\partial^2 S_{ex}(f)}{\partial u \partial v} = \frac{c}{6} \exp\left(-\frac{12}{c} S_{ex}(f)\right).$$

• Let f be a nonconstant meromorphic function on a domain D in the complex plane. For $z \in D$ with $f(z) \neq \infty$, $f'(z) \neq 0$, we consider the quantity

$$G(z+w,z) = \frac{f'(z)}{f(z+w) - f(z)} = \frac{1}{w} - \sum_{n=1}^{\infty} \psi_n[f](z)w^{n-1}.$$

The quantities $\psi_n[f](z)$ are called Aharonov invariants. • The Aharonov invariants are all invariant under global (Möbius) transformations. Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(7)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Aharonov invariants and $S_{ex}(f)$

• $\{\psi_n\}$ exhaust all the Möbius invariants.

Integrable Structures in Low-dimensional Holography and Cosmology

 $R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Aharonov invariants and $S_{ex}(f)$

- $\{\psi_n\}$ exhaust all the Möbius invariants.
- The quantity $\partial G(\zeta,z)/\partial \zeta$

$$\frac{\partial G(\zeta, z)}{\partial \zeta} = -\frac{f'(z)f'(\zeta)}{(f(\zeta) - f(z))^2}$$
$$= -\frac{1}{(\zeta - z)^2} - \sum_{n=1}^{\infty} (n-1)\psi_n[f](z)(\zeta - z)^{n-2}.$$
 (8)

is invariant under Möbius transformations $\psi_n[M \circ f] = \psi_n[f], n \ge 2.$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Aharonov invariants and $S_{ex}(f)$

- $\{\psi_n\}$ exhaust all the Möbius invariants.
- The quantity $\partial G(\zeta,z)/\partial \zeta$

$$\frac{\partial G(\zeta, z)}{\partial \zeta} = -\frac{f'(z)f'(\zeta)}{(f(\zeta) - f(z))^2}$$
$$= -\frac{1}{(\zeta - z)^2} - \sum_{n=1}^{\infty} (n-1)\psi_n[f](z)(\zeta - z)^{n-2}.$$
 (8)

is invariant under Möbius transformations $\psi_n[M \circ f] = \psi_n[f]$, $n \ge 2$. The expression entering S_{ex} has the expansion:

$$\frac{f'(z)f'(\zeta)}{(f(\zeta)-f(z))^2} = \frac{1}{(\zeta-z)^2} + \sum_{n=1}^{\infty} (n-1)\psi_n[f](z)(\zeta-z)^{n-2}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

Recursion relations for Aharonov invariants

The first two $\psi_n[f]$ are

$$\psi_2[f] = \frac{1}{6} \left[\frac{f'''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)} \right)^2 \right] = \frac{1}{3!} S(f).$$
(9)

Aharonov proved the recursion formula:

$$(n+1)\psi_n[f] = \psi_{n-1}[f]' + \sum_{k=2}^{n-2} \psi_k[f]\psi_{n-k}[f], \quad n \ge 3.$$

For instance, first few invariants are

$$\psi_3[f] = \frac{S(f)'}{4!}; \quad \psi_4 = \frac{1}{5!} [S''(f) + \frac{2S^2(f)}{3}];$$

$$\psi_5 = \frac{1}{6!} [S'''(f) + 3S(f)S'(f)]. \quad (11)$$

Integrable Structures in Low-dimensional Holography and Cosmology

$\mathsf{R.C.Rashkov}^{\star\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

(10)

Classes univalent functions and Grunsky coefficients

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Classes univalent functions and Grunsky coefficients

• The classes univalent functions we use are

$$\tilde{S} = \left\{ f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots = \sum_{n=1}^{\infty} a_n z^n, a_1 \neq 0 \right\}$$
$$\Sigma = \left\{ g(z) = z + b_0 + \frac{b_1}{z} + \dots = bz + \sum_{n=0}^{\infty} b_n z^{-n} \right\}$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

Classes univalent functions and Grunsky coefficients

• The classes univalent functions we use are

$$\tilde{S} = \left\{ f(z) = a_1 z + a_2 z^2 + a_3 z^3 + \dots = \sum_{n=1}^{\infty} a_n z^n, a_1 \neq 0 \right\}$$
$$\Sigma = \left\{ g(z) = z + b_0 + \frac{b_1}{z} + \dots = bz + \sum_{n=0}^{\infty} b_n z^{-n} \right\}$$

• The functions analytic in (∞, ∞) , $(\infty, 0)$ and (0, 0):

$$\log \frac{g(z) - g(\zeta)}{z - \zeta}, \quad \log \frac{g(z) - f(\zeta)}{z - \zeta}, \quad \log \frac{f(z) - f(\zeta)}{z - \zeta}$$

•Another definition ($\Phi_0(w) \equiv 1$):

$$\frac{g'(z)}{g(z)-w} = \sum_{n=0}^{\infty} \Phi_n(w) z^{-n-1}, \quad \Phi_n(w) = \sum_{m=0}^n b_{n,m} w^m.$$

 $b_{n,m}$ are called Grunsky coefficients.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モー・ ヨー うへぐ

• Expansions:

$$\log \frac{g(z) - g(\zeta)}{z - \zeta} = -\sum_{m,n=1}^{\infty} b_{mn} z^{-m} \zeta^{-n},$$

$$\log \frac{g(z) - f(\zeta)}{z - \zeta} = -\sum_{m=1, n=0}^{\infty} b_{m, -n} z^{-m} \zeta^n,$$

$$\log \frac{f(z) - f(\zeta)}{z - \zeta} = -\sum_{m=0, n=0}^{\infty} b_{-m, -n} z^m \zeta^n.$$

Integrable Structures in Low-dimensional Holography and Cosmology

$\mathsf{R.C.Rashkov}^{\star\,\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Expansions:

$$\log \frac{g(z) - g(\zeta)}{z - \zeta} = -\sum_{m,n=1}^{\infty} b_{mn} z^{-m} \zeta^{-n},$$
$$\log \frac{g(z) - f(\zeta)}{z - \zeta} = -\sum_{m=1}^{\infty} b_{m-m} z^{-m} \zeta^{m}$$

$$\log \frac{z-\zeta}{z-\zeta} = \sum_{m=1,n=0}^{\infty} b_{m,-n} z^m \zeta^n,$$
$$\log \frac{f(z) - f(\zeta)}{z-\zeta} = -\sum_{m=0,n=0}^{\infty} b_{-m,-n} z^m \zeta^n.$$

m = 0, n = 0

$$\frac{f'(z)f'(w)}{(f(z) - f(w))^2} - \frac{1}{(z - w)^2} = \frac{\partial^2}{\partial z \partial w} \log \frac{f(z) - f(w)}{z - w}$$
$$= -\sum_{m,n \ge 1} mn \, b_{mn} z^{m-1} w^{n-1}. \quad (12)$$

Integrable Structures in Low-dimensional Holography and Cosmology

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

イロト 不得 トイヨト イヨト ヨー のくぐ

OToda and Grunsky coefficients

• Briefs on dToda hierarchy

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

OToda and Grunsky coefficients

• Briefs on dToda hierarchy

 \checkmark Sato approach to integrable hierarchies: introduce pseudodifferential operators

$$W_m = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + \dots + w_m \partial^{-m}.$$
 (13)

and consider

$$W = \lim_{m \to \infty} W_m = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + w_3 \partial^{-3} + \cdots, \quad (14)$$

where $w_j (j = 1, 2, ...)$ are functions of (x, t).

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

OToda and Grunsky coefficients

• Briefs on dToda hierarchy

 \checkmark Sato approach to integrable hierarchies: introduce pseudodifferential operators

$$W_m = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + \dots + w_m \partial^{-m}.$$
 (13)

and consider

$$W = \lim_{m \to \infty} W_m = 1 + w_1 \partial^{-1} + w_2 \partial^{-2} + w_3 \partial^{-3} + \cdots, \quad (14)$$

where $w_j (j = 1, 2, ...)$ are functions of (x, t). \checkmark Define the Lax operator

$$L = W\partial W^{-1} = \partial + \sum_{i=1}^{\infty} u_i \partial^{-i+1}, \qquad L^n = W\partial^n W^{-1}, \quad (15)$$

Define

$$B_n = L^n + B_n^- = (W \partial^n W^{-1})^+.$$
 (16)

The Lax equation is

$$\frac{\partial L}{\partial t_n} = [B_n, L] = B_n L - L B_n. \tag{17}$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

Dispersionless Toda hierarchy

Definition The dispersionless Toda hierarchy

$$\frac{\partial \mathcal{L}}{\partial t_n} = \{ \mathcal{B}_n, \mathcal{L} \}, \quad \frac{\partial \mathcal{L}}{\partial \bar{t}_n} = \{ \bar{\mathcal{B}}_n, \mathcal{L} \}, \quad (18)$$

$$\frac{\partial \bar{\mathcal{L}}}{\partial t_n} = \{ \mathcal{B}_n, \bar{\mathcal{L}} \}, \quad \frac{\partial \bar{\mathcal{L}}}{\partial \bar{t}_n} = \{ \bar{\mathcal{B}}_n, \bar{\mathcal{L}} \}, \quad (19)$$

where \mathcal{L} and \mathcal{L} are generating functions of unknowns $u_i = u_i(t, \bar{t})$, $\bar{u}_i = \bar{u}_i(t, \bar{t})$,

$$\mathcal{L} = p + u_1 + u_2 p^{-1} + u_3 p^{-2} + \cdots$$
 (20)

$$\bar{\mathcal{L}} = \bar{u}_0 p^{-1} + \bar{u}_1 + \bar{u}_2 p + \bar{u}_3 p^2 + \cdots$$
 (21)

and \mathcal{B}_n , \mathcal{B}_n are defined by

$$\mathcal{B}_n = (\mathcal{L}^n)_{\geq 0}, \qquad \bar{\mathcal{B}}_n = \left(\bar{\mathcal{L}}^{-n}\right)_{\leq 0}.$$
 (22)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

• The equation (22) \implies map to n-th Faber polynomial (in certain basis)! The Grunsky coefficients can be identified as $b_{nm} = 1/nm(\partial_n v_m)$ and can be represented in terms of tau-function ($\mathcal{F} = \log \tau_{dToda}$)!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

<ロト < 置 > < 置 > < 置 > < 置 > のへの

• The equation (22) \implies map to n-th Faber polynomial (in certain basis)! The Grunsky coefficients can be identified as $b_{nm} = 1/nm(\partial_n v_m)$ and can be represented in terms of tau-function ($\mathcal{F} = \log \tau_{dToda}$)!

Tau-function and Grunsky coefficients

The Grunsky coefficients b_{nm} of the pair $(g = w(\mathcal{L}), f = w(\bar{\mathcal{L}}))$ are related to the tau function, or fee energy as follows:

$$\begin{split} b_{00} &= -\frac{\partial^2 \mathcal{F}}{\partial t_0^2}, \quad b_{n,0} = \frac{1}{n} \frac{\partial^2 \mathcal{F}}{\partial t_0 \partial t_n}, \quad b_{-n,0} = \frac{1}{n} \frac{\partial^2 \mathcal{F}}{\partial t_0 \partial t_{-n}}, \quad n \ge 1 \\ b_{m,n} &= -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_m \partial t_n} \qquad b_{-m,-n} = -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_{-m} \partial t_{-n}}, \quad n,m \ge 1 \\ b_{-m,n} &= b_{n,-m} = -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_{-m} \partial t_n}, \quad n,m \ge 1. \end{split}$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・ヨト・ヨー うへぐ

• The equation (22) \implies map to n-th Faber polynomial (in certain basis)! The Grunsky coefficients can be identified as $b_{nm} = 1/nm(\partial_n v_m)$ and can be represented in terms of tau-function ($\mathcal{F} = \log \tau_{dToda}$)!

Tau-function and Grunsky coefficients

The Grunsky coefficients b_{nm} of the pair $(g = w(\mathcal{L}), f = w(\bar{\mathcal{L}}))$ are related to the tau function, or fee energy as follows:

$$\begin{split} b_{00} &= -\frac{\partial^2 \mathcal{F}}{\partial t_0^2}, \quad b_{n,0} = \frac{1}{n} \frac{\partial^2 \mathcal{F}}{\partial t_0 \partial t_n}, \quad b_{-n,0} = \frac{1}{n} \frac{\partial^2 \mathcal{F}}{\partial t_0 \partial t_{-n}}, \quad n \ge 1 \\ b_{m,n} &= -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_m \partial t_n} \qquad b_{-m,-n} = -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_{-m} \partial t_{-n}}, \quad n,m \ge 1 \\ b_{-m,n} &= b_{n,-m} = -\frac{1}{mn} \frac{\partial^2 \mathcal{F}}{\partial t_{-m} \partial t_n}, \quad n,m \ge 1. \end{split}$$

• The entanglement entropy takes the form

$$S_{vac} - S_{ex} = \frac{c}{12} \log \left(1 + (z - w)^2 \sum_{m,n} \frac{\partial^2 \mathcal{F}}{\partial t_m \partial t_n} z^{m-1} w^{n-1} \right) \quad .$$

A D > A B > A B > A B >

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

The tau-function

 \checkmark The structures appeared so far - SL(2) projective invariants (Schwarzian, Aharonov invariants);

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

The tau-function

 \checkmark The structures appeared so far - SL(2) projective invariants (Schwarzian, Aharonov invariants);

- Next issue: generalization to higher invariants;
- Starting point is again the expression:

$$W_m \partial^m h_0^{(j)}(x;t) = (\partial^m + w_1(x;t)\partial^{m-1} + \cdots + w_m(x;t)) h_0^{(j)}(x;t) = 0, \quad j = 1, 2, \dots, m.$$
(23)

One can find the expressions for $w_j(x;t)$ as

$$w_{j}(x;t) = \frac{\begin{vmatrix} h_{m-1}^{(1)} & \cdots & -h_{m}^{(1)} & \cdots & h_{0}^{(1)} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ h_{m-1}^{(m)} & \cdots & -h_{m}^{(m)} & \cdots & h_{0}^{(m)} \end{vmatrix}}{\begin{vmatrix} h_{m-1}^{(1)} & \cdots & h_{m-j}^{(1)} & \cdots & h_{0}^{(1)} \\ \vdots & \cdots & \vdots & \cdots & \vdots \\ h_{m-1}^{(m)} & \cdots & h_{m-j}^{(m)} & \cdots & h_{0}^{(m)} \end{vmatrix}}.$$

$$(24)$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• As usually, the standard independent solutions $f^{(i)}$ to (23) have been generalized to include "times" $\{t_1, t_2, \dots\} \Rightarrow h_i^{(j)}(x; t)$.

Structures in
Low-dimensional
Holography and
Cosmology
Cosmology
$R.C.Rashkov^{\star\dagger}$
Möbius structure
Dispesionless Toda
Dispesioness Toua
Higher projective
ingher projective
invariants and
VV-geometry
Higher opin
more
Final

Integrable

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

• As usually, the standard independent solutions $f^{(i)}$ to (23) have been generalized to include "times" $\{t_1, t_2, \dots\} \Rightarrow h_i^{(j)}(x; t)$. • The latter solutions, $h_i^{(j)}$ are used to fedine the τ -function,

$$\tau(x;t) = \begin{vmatrix} h_0^{(1)} & \cdots & h_0^{(m)} \\ h_1^{(1)} & \cdots & h_1^{(m)} \\ \vdots & \ddots & \vdots \\ h_{m-1}^{(1)} & \cdots & h_{m-1}^{(m)}. \end{vmatrix}$$

where

$$h_0^{(j)}(x;0) = f^{(j)}(x),$$
 (26)

and one can think of $h_n^{(j)}(x;t)$ as defined by

$$h_n^{(j)}(x;t) = \frac{\partial h_0^{(j)}(x;t)}{\partial t_n} = \frac{\partial^n h_0^{(j)}(x;t)}{\partial x^n}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

(25)

(27)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・ヨト ・日・ うへぐ

• As usually, the standard independent solutions $f^{(i)}$ to (23) have been generalized to include "times" $\{t_1, t_2, ...\} \Rightarrow h_i^{(j)}(x; t)$. • The latter solutions, $h_i^{(j)}$ are used to fedine the τ -function,

$$\tau(x;t) = \begin{vmatrix} h_0^{(1)} & \cdots & h_0^{(m)} \\ h_1^{(1)} & \cdots & h_1^{(m)} \\ \vdots & \ddots & \vdots \\ h_{m-1}^{(1)} & \cdots & h_{m-1}^{(m)}. \end{vmatrix}$$

where

$$h_0^{(j)}(x;0) = f^{(j)}(x),$$
 (26)

and one can think of $h_n^{(j)}(x;t)$ as defined by

$$h_n^{(j)}(x;t) = \frac{\partial h_0^{(j)}(x;t)}{\partial t_n} = \frac{\partial^n h_0^{(j)}(x;t)}{\partial x^n}.$$

Relations to w_j

$$w_j = (-1)^j \frac{1}{\tau} S_{\text{H}}(\tilde{\partial}_t) \tau.$$
(28)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

(25)

(27)

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・田下・田下・日 うらん

The projective invariants associated to the ordinary differential equation

$$y^{(n)} + p_{n-2}(z)y^{(n-2)} + \dots + p_0(z)y = 0,$$
 (29)

are given by

$$p_{i} \equiv q_{i} = \frac{1}{W_{n} \sqrt[n]{W_{n}}} \left[\sum_{j=0}^{n-1} (-1)^{2n-j} (1-\delta_{nj}) \binom{n-j}{n-j-i} \right].$$
$$W_{n-j} \left(\sqrt[n]{W_{n}} \right)^{(n-j-i)} , \quad (30)$$

for $i = 0, 1, \dots, n-2$.

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

<ロト < 置 > < 置 > < 置 > < 置 > のへの

Here:

$$\tilde{W}_{i} = \begin{vmatrix} f_{1}' & f_{2}' & \cdots & f_{n-1}' \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}^{(i-1)} & f_{2}^{(i-1)} & \cdots & f_{n}^{(i-1)} \\ f_{1}^{(i+1)} & f_{2}^{(i+1)} & \cdots & f_{n}^{(i+1)} \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}^{(n)} & f_{2}^{(n)} & \cdots & f_{n-1}^{(n)} \end{vmatrix}, \qquad W_{i} = (-1)^{n+i} \tilde{W}.$$
(31)

Examle: Let us apply formula (21) to the n = 2 case - we have only one invariant, namely p_0 which is given by

$$p_{0} = \frac{1}{W_{2}\sqrt{W_{2}}} \left[W_{2} \left(\sqrt{W_{2}}\right)'' - W_{1} \left(\sqrt{W_{2}}\right)' \right]$$
$$= \frac{1}{2} \left[\frac{f'''}{f'} - \frac{2}{3} \frac{f''^{2}}{f'^{2}} \right] \equiv \frac{1}{2} \{f, z\}.$$
(32)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*1

.

Higher projective invariants and W-geometry

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

• For completeness, here are the invariants in the case of n = 3. This case corresponds to the third order equation $y''' + p_1(z)y' + p_0(z)y = 0.$ (33)

The formula (21) gives

$$p_{0} = -\frac{1}{3} \left[\frac{2}{9} \left(\frac{f_{1}'f_{2}''' - f_{1}'''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right)^{3} - \left(\frac{f_{1}'f_{2}''' - f_{1}'''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right)'' - \left(\frac{f_{1}'f_{2}''' - f_{1}''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right) \left(\frac{f_{1}''f_{2}''' - f_{1}'''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right) \right], \quad (34)$$

$$p_{1} = \frac{f_{1}''f_{2}''' - f_{1}''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} + \left(\frac{f_{1}'f_{2}''' - f_{1}'''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right)' - \frac{1}{3} \left(\frac{f_{1}'f_{2}''' - f_{1}'''f_{2}'}{f_{1}'f_{2}'' - f_{1}''f_{2}'} \right)^{2}$$

$$p_0 = \frac{1}{3} \left[\omega_1 \omega_2 - \omega_2'' - \frac{2}{9} \omega_2^3 \right], \quad p_1 = \omega_1 + \omega_2' - \frac{1}{3} \omega_2^2.$$

where

$$\omega_1 = \frac{W_1}{W_3} = \frac{f_1'''f_2'' - f_1''f_2''}{f_1'f_2'' - f_1''f_2'}, \qquad \omega_2 = \frac{W_2}{W_3} = \frac{f_1'f_2'' - f_1''f_2'}{f_1'f_2'' - f_1''f_2'}$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*[†]

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

,

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モン・ビー もんぐ

 \bullet From SL(2) formulation to SL(n) - define the connections as

$$\begin{split} A &= (a^{a}_{\mu}T_{a} + a^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu} \\ \bar{A} &= (\bar{a}^{a}_{\mu}T_{a} + \bar{a}^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}. \end{split}$$

The zweibeins and spin connections

$$e_{\mu} = \frac{1}{2}(A_{\mu} - \bar{A}_{\mu}), \qquad \omega_{\mu} = \frac{1}{2}(A_{\mu} + \bar{A}_{\mu}).$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

 \bullet From SL(2) formulation to SL(n) - define the connections as

$$A = (a^{a}_{\mu}T_{a} + a^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}$$
$$\bar{A} = (\bar{a}^{a}_{\mu}T_{a} + \bar{a}^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}.$$

The zweibeins and spin connections

$$e_{\mu} = \frac{1}{2}(A_{\mu} - \bar{A}_{\mu}), \qquad \omega_{\mu} = \frac{1}{2}(A_{\mu} + \bar{A}_{\mu}).$$

The action

$$S_{\text{grav}} = S_{CS}[A] - S_{CS}[\bar{A}]$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

 \bullet From SL(2) formulation to SL(n) - define the connections as

$$A = (a^{a}_{\mu}T_{a} + a^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}$$
$$\bar{A} = (\bar{a}^{a}_{\mu}T_{a} + \bar{a}^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}.$$

The zweibeins and spin connections

$$e_{\mu} = \frac{1}{2}(A_{\mu} - \bar{A}_{\mu}), \qquad \omega_{\mu} = \frac{1}{2}(A_{\mu} + \bar{A}_{\mu}).$$

The action

$$S_{\text{grav}} = S_{CS}[A] - S_{CS}[\bar{A}] + \frac{S_{bdy}}{S_{bdy}}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

 \bullet From SL(2) formulation to SL(n) - define the connections as

$$A = (a^{a}_{\mu}T_{a} + a^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}$$

$$\bar{A} = (\bar{a}^{a}_{\mu}T_{a} + \bar{a}^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}.$$

The zweibeins and spin connections

$$e_{\mu} = \frac{1}{2}(A_{\mu} - \bar{A}_{\mu}), \qquad \omega_{\mu} = \frac{1}{2}(A_{\mu} + \bar{A}_{\mu}).$$

The action

$$S_{\text{grav}} = S_{CS}[A] - S_{CS}[\bar{A}] + \frac{S_{bdy}}{S_{bdy}}.$$

• One can apply all the technology we developed so far to this case!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

 \bullet From SL(2) formulation to SL(n) - define the connections as

$$\begin{split} A &= (a^{a}_{\mu}T_{a} + a^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu} \\ \bar{A} &= (\bar{a}^{a}_{\mu}T_{a} + \bar{a}^{a_{1}...a_{s}}_{\mu}T_{a_{1}...a_{s}})dx^{\mu}. \end{split}$$

The zweibeins and spin connections

$$e_{\mu} = \frac{1}{2}(A_{\mu} - \bar{A}_{\mu}), \qquad \omega_{\mu} = \frac{1}{2}(A_{\mu} + \bar{A}_{\mu}).$$

The action

$$S_{\text{grav}} = S_{CS}[A] - S_{CS}[\bar{A}] + \frac{S_{bdy}}{S_{bdy}}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

ADA E AEAAEA

• One can apply all the technology we developed so far to this case!

• Go to the main goal - bulk reconstruction!
The setup: radial evolution

 \bullet Consider Lorentzian d+1 dimensionsl manifold (\mathcal{M},g) which is solution of the Einstein equation.

Definition: The manifold (\mathcal{M},g) is called conformally compact if \exists a defining function

$$\rho^{-1}(0) = \partial \mathcal{M}, \qquad \partial \rho \neq 0 \text{ on } \partial \mathcal{M},$$
(35)

& the conf. equiv. metric $\ell^2 \bar{g} = \rho^2 g$ extends smoothly on $\partial \mathcal{M}$. • Let $\partial \mathcal{M} = \Sigma$. At some ρ we have Σ_{ρ} fro which we have

$$n = \partial_r = -\frac{\rho}{\ell} \partial_\rho, \quad K^{\nu}_{\mu} = \gamma^{\nu\alpha} \nabla_{\alpha} n_{\mu} = \frac{1}{2} \gamma^{\nu\alpha} \mathcal{L}_v g_{\alpha\mu}$$
$$\gamma_{\mu\nu} = g_{\mu\nu} - \varepsilon n_{\mu} n_{\nu}, \quad \varepsilon = n^2, \quad \vec{n} \perp \Sigma_{\rho}.$$
 (36)

Radial evolution

$$\partial_r \Psi(\gamma_\rho) = \int_{\Sigma_\rho} \partial_r \gamma_{ij} \frac{\delta \Psi}{\delta \gamma_{ij}} \, \mathop{\sim}_{\rho=0} \, \frac{2}{\ell} \int_{\Sigma_\rho} \gamma_{ij} \frac{\delta \Psi}{\delta \gamma_{ij}}, \tag{37}$$

where the last operator is just the operator of conformal scaling. This means that the radial evolution is intimately related to the conformal rescaling. Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

• Gauge invariance (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・ヨト ・日・ うへぐ

• Gauge invariance (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

- Diffeomorphisms with parameters (v,\bar{v}) (as a Hamiltonian constraint) are generated by (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma_\rho} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Gauge invariance (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma} \left(vA^a + \frac{\pi}{k}\frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k}\partial\frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

- Diffeomorphisms with parameters (v,\bar{v}) (as a Hamiltonian constraint) are generated by (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma_\rho} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

• Make Fourier-Laplace transformation:

$$\Psi(\mu) = \int DA\Psi(A)\chi_{\mu}(A), \qquad \chi_{\mu} = e^{-\frac{k}{2\pi}\int \mu \operatorname{tr} A^{2}}.$$
 (38)

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

• Gauge invariance (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

- Diffeomorphisms with parameters (v,\bar{v}) (as a Hamiltonian constraint) are generated by (2d)

$$H_v\Psi(A) \equiv \int_{\Sigma_\rho} \left(vA^a + \frac{\pi}{k} \frac{\delta}{\delta A}^a \right) \left(\bar{\partial}A^a - \frac{\pi}{k} \partial \frac{\delta}{\delta A}^a \right) \Psi(A) = 0.$$

• Make Fourier-Laplace transformation:

$$\Psi(\mu) = \int DA\Psi(A)\chi_{\mu}(A), \qquad \chi_{\mu} = e^{-\frac{k}{2\pi}\int \mu \operatorname{tr} A^{2}}.$$
 (38)

• The H_v constraint in μ -representation \implies Ward Identity

$$\begin{split} H_v\Psi(A) &= 0 \ \Rightarrow \int_{\Sigma_\rho} \left(v + \mu \bar{v} \right) \left(\bar{\partial} - \mu \partial - 2\partial \mu \right) \frac{\delta}{\delta \mu(z)} \Psi(A) \\ &= -\frac{c}{12\pi} \int_{\Sigma_\rho} d^2 z (v + \mu \bar{v}) \partial^3 \mu \Psi(A), \end{split}$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Define for 3d gravity case the conjugate

$$\Pi^{ab} = \frac{2}{\sqrt{\gamma}} \frac{\delta}{\delta \gamma_{ab}}, \qquad \Pi = \pi^a_a$$

Diffeo's

$$H_b = \nabla_a \Pi_b^a.$$

• The Hamiltonian constraint (geometry idependence, AdS case)

$$H = \kappa^{2} : \left(\Pi^{ab} \Pi^{cd} G_{abcd} - \frac{\Pi^{2}}{d-1} \right) : +R(\gamma) + \frac{d(d-1)}{l^{2}},$$

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Define for 3d gravity case the conjugate

$$\Pi^{ab} = \frac{2}{\sqrt{\gamma}} \frac{\delta}{\delta \gamma_{ab}}, \qquad \Pi = \pi^a_a$$

Diffeo's

$$H_b = \nabla_a \Pi_b^a.$$

• The Hamiltonian constraint (geometry idependence, AdS case)

$$H = \kappa^{2} : \left(\Pi^{ab} \Pi^{cd} G_{abcd} - \frac{\Pi^{2}}{d-1} \right) : +R(\gamma) + \frac{d(d-1)}{l^{2}},$$

implies "Wheeler-deWitt equation!

$$H\Psi = 0$$

Integrable Structures in Low-dimensional Holography and Cosmology

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・日本・日本・日本・日本・日本

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・田・・田・ 日・ ひゃぐ

• On the other hand

$$\Psi \equiv \Psi[A] = \int D\mu \Psi(\mu) \chi_{\mu}(-A).$$

Therefore, 3d functionsl $\Psi[A]$ satisfies Wheeler-deWitt equation providing μ fulfills 2d Ward Identity!

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

On the other hand

$$\Psi \equiv \Psi[A] = \int D\mu \Psi(\mu) \chi_{\mu}(-A).$$

Therefore, 3d functionsl $\Psi[A]$ satisfies Wheeler-deWitt equation providing μ fulfills 2d Ward Identity! • The last statement provides direct proof of the holography in this particular case! Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

On the other hand

$$\Psi \equiv \Psi[A] = \int D\mu \Psi(\mu) \chi_{\mu}(-A).$$

Therefore, 3d functionsl $\Psi[A]$ satisfies Wheeler-deWitt equation providing μ fulfills 2d Ward Identity!

- The last statement provides direct proof of the holography in this particular case!
- The projective invariants provide bases for W-geometries and higher spin theories!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

On the other hand

$$\Psi \equiv \Psi[A] = \int D\mu \Psi(\mu) \chi_{\mu}(-A).$$

Therefore, 3d functionsl $\Psi[A]$ satisfies Wheeler-deWitt equation providing μ fulfills 2d Ward Identity!

- The last statement provides direct proof of the holography in this particular case!
- The projective invariants provide bases for W-geometries and higher spin theories!
- For n = 3 (W_3 case) the action in terms of invariants

 $\mathcal{L} \sim q_0 \bar{q}_0 + q_1 \bar{q}_1.$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

On the other hand

$$\Psi \equiv \Psi[A] = \int D\mu \Psi(\mu) \chi_{\mu}(-A).$$

Therefore, 3d functionsl $\Psi[A]$ satisfies Wheeler-deWitt equation providing μ fulfills 2d Ward Identity!

• The last statement provides direct proof of the holography in this particular case!

• The projective invariants provide bases for W-geometries and higher spin theories!

• For n = 3 (W_3 case) the action in terms of invariants

$$\mathcal{L} \sim q_0 \bar{q}_0 + q_1 \bar{q}_1.$$

• For general n (W_n case)

$$\mathcal{L} \sim \sum_{i} \operatorname{coeff}_{i} \operatorname{tr} q_{i} \bar{q}_{j} + \cdots$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

A sketch of relation to SYK

• The Sachdev-Ye-Kitaev (SYK) model describes interacting Majorana fermions with random (gaussian) coupling

$$S = \frac{i}{2} \int dt \left(\sum_{\alpha=1}^{N} \psi^{\alpha} \partial \psi_{\alpha} - i^{q} \sum_{\alpha_{1} \dots \alpha_{q}} J^{\alpha_{1} \dots \alpha_{q}} \psi_{\alpha_{1}} \dots \psi_{\alpha_{q}}, \right)$$

where

$$\langle J^{\alpha_1...\alpha_q} J^{\beta_1...\beta_q} \rangle = \frac{J^2(q-1)}{N^{q-1}} \prod_i^q \delta^{\alpha_i\beta_i}.$$

• SYK model addresses many interesting issues as properties of non-Fermi liquid behavior, quantum chaos, emergent conformal symmetry and holographic duality. SYK model can be used to describe black holes (BHs) in 2d nearly-Anti-de-Sitter gravity.

• The effective action is just the Schwarzian

$$S_{Sch} = -C \int t d\{f, t\}, \qquad \{f, t\} = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ > ◆□ >

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モー・ ヨー うへぐ

 \bullet 2d generalization suggested in 1701.00528 (G. Turiaci, H, Verlinde), leading to double Schwarzian theory in the UV (in light-cone)

$$S_{UV} \sim \int du \, dv \{x_+, u\} \{x_-, v\}.$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

<ロト < 置 > < 置 > < 置 > < 置 > のへの

 \bullet 2d generalization suggested in 1701.00528 (G. Turiaci, H, Verlinde), leading to double Schwarzian theory in the UV (in light-cone)

$$S_{UV} \sim \int du \, dv \{x_+, u\} \{x_-, v\}.$$

• Using Lagrange multipliers \iff

$$S_{UV} \sim \int du \, dv \left(e_v^+ \{ x_+, u \} + e_u^+ \{ x_+, v \} \right) - \int \epsilon^{\mu\nu} e_\mu^+ e_\nu^-$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

 \bullet 2d generalization suggested in 1701.00528 (G. Turiaci, H, Verlinde), leading to double Schwarzian theory in the UV (in light-cone)

$$S_{UV} \sim \int du \, dv \{x_+, u\} \{x_-, v\}.$$

• Using Lagrange multipliers \iff

$$S_{UV} \sim \int du \, dv \left(e_v^+ \{ x_+, u \} + e_u^+ \{ x_+, v \} \right) - \int \epsilon^{\mu\nu} e_\mu^+ e_\nu^-.$$

• Relations between double Schwarzian & Polyakov-Liouville actions ($\mathcal{L} \sim p_0 \bar{p}_0$ in our case) - in 1701.00528 (G. Turiaci, H, Verlinde)

$$S_{grav}[E] = \min_{e} \left(\int S_L(E+e) - \int \epsilon^{\mu\nu} e^+_{\mu} e^-_{\nu} \right).$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・日本・日本・日本・日本・日本

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モー・ ヨー うへぐ

• Using the same logic as in the SL(2) case, for n=3 we propose the higher spin SYK 2D theory by the lagrangian density

$$\mathcal{L} \sim \frac{1}{3} \left[\omega_1 \omega_2 - \omega_2'' - \frac{2}{9} \omega_2^3 \right] \cdot \frac{1}{3} \overline{\left[\omega_1 \omega_2 - \omega_2'' - \frac{2}{9} \omega_2^3 \right]} + (\omega_1 + \omega_2' - \frac{1}{3} \omega_2^2) \overline{(\omega_1 + \omega_2' - \frac{1}{3} \omega_2^2)}.$$
 (39)

- some other reductions of 2D \rightarrow 1D are discussed in 1705.08408 (T. Mertens, G. Turiaci and H. Verlinde).

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

イロト (同) イヨト (ヨ) ののの

• Using the same logic as in the SL(2) case, for n=3 we propose the higher spin SYK 2D theory by the lagrangian density

$$\mathcal{L} \sim \frac{1}{3} \left[\omega_1 \omega_2 - \omega_2'' - \frac{2}{9} \omega_2^3 \right] \cdot \frac{1}{3} \overline{\left[\omega_1 \omega_2 - \omega_2'' - \frac{2}{9} \omega_2^3 \right]} + (\omega_1 + \omega_2' - \frac{1}{3} \omega_2^2) \overline{(\omega_1 + \omega_2' - \frac{1}{3} \omega_2^2)}.$$
 (39)

some other reductions of 2D → 1D are discussed in 1705.08408 (T. Mertens, G. Turiaci and H. Verlinde).
We generalize the above picture to arbitrary higher spin

theories by making use of W-geometry and jet bundles!

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Putting all these considerations together, one can draw the following conclusions:

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

<ロト < 置 > < 置 > < 置 > < 置 > のへの

• Putting all these considerations together, one can draw the following conclusions:

- We found that the following quantities are related by appropriate tau-functions:
 - entanglement entropy and Aharonov invariants;
 - Higher spin gravities;
 - higher projective invariants.

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*1

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

イロト 不得 トイヨト イヨト ヨー のくで

• Putting all these considerations together, one can draw the following conclusions:

- We found that the following quantities are related by appropriate tau-functions:
 - entanglement entropy and Aharonov invariants;
 - Higher spin gravities;
 - higher projective invariants.
- The basis for W-geometries are related to tau-functions

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

イロト 不得 トイヨト イヨト ヨー のくで

• Putting all these considerations together, one can draw the following conclusions:

- We found that the following quantities are related by appropriate tau-functions:
 - entanglement entropy and Aharonov invariants;
 - Higher spin gravities;
 - higher projective invariants.
- The basis for W-geometries are related to tau-functions
- We propose a generalization of the relations between SYK (Schwarzian) model, integrable 2d CFT and 3d Gravity

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Putting all these considerations together, one can draw the following conclusions:

- We found that the following quantities are related by appropriate tau-functions:
 - entanglement entropy and Aharonov invariants;
 - Higher spin gravities;
 - higher projective invariants.
- The basis for W-geometries are related to tau-functions
- We propose a generalization of the relations between SYK (Schwarzian) model, integrable 2d CFT and 3d Gravity
- We suggest that all these have geometric description in terms of W-geometries;

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

• Putting all these considerations together, one can draw the following conclusions:

- We found that the following quantities are related by appropriate tau-functions:
 - entanglement entropy and Aharonov invariants;
 - Higher spin gravities;
 - higher projective invariants.
- The basis for W-geometries are related to tau-functions
- We propose a generalization of the relations between SYK (Schwarzian) model, integrable 2d CFT and 3d Gravity
- We suggest that all these have geometric description in terms of W-geometries;
- We give arguments that entanglement entropies in low-dimensionnal holography is intimately related to Toda theory.

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

 Generalization of HS projective actions for 1d and 2d theories Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・モン・ビー もんぐ

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories
- Localization for 1-loop exact partition function -Stanford-Witten, 1703.04612

$$Z = \int \frac{d\mu[\phi]}{SL(2,\mathbb{R})} \exp\left[-\frac{1}{2g^2} \int_0^{2\pi} d\tau \left(\frac{\phi''^2}{\phi'^2} - \phi'^2\right)\right]$$

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories
- Localization for 1-loop exact partition function -Stanford-Witten, 1703.04612

$$Z = \int \frac{d\mu[\phi]}{SL(2,\mathbb{R})} \exp\left[-\frac{1}{2g^2} \int_0^{2\pi} d\tau \left(\frac{\phi''^2}{\phi'^2} - \phi'^2\right)\right]$$

Generalization for 4d/3d holography

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories
- Localization for 1-loop exact partition function -Stanford-Witten, 1703.04612

$$Z = \int \frac{d\mu[\phi]}{SL(2,\mathbb{R})} \exp\left[-\frac{1}{2g^2} \int_0^{2\pi} d\tau \left(\frac{\phi''^2}{\phi'^2} - \phi'^2\right)\right]$$

- Generalization for 4d/3d holography
- Study wide variety of physical consequences

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Fina

・ロト・西ト・山田・山田・山下

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories
- Localization for 1-loop exact partition function -Stanford-Witten, 1703.04612

$$Z = \int \frac{d\mu[\phi]}{SL(2,\mathbb{R})} \exp\left[-\frac{1}{2g^2} \int_{0}^{2\pi} d\tau \left(\frac{\phi''^2}{\phi'^2} - \phi'^2\right)\right]$$

- Generalization for 4d/3d holography
- Study wide variety of physical consequences
- Generalizations of TT deformations and Banãdos metric?

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

- Generalization of HS projective actions for 1d and 2d theories
- Reconstruction of bulk theories
- Localization for 1-loop exact partition function -Stanford-Witten, 1703.04612

$$Z = \int \frac{d\mu[\phi]}{SL(2,\mathbb{R})} \exp\left[-\frac{1}{2g^2} \int_{0}^{2\pi} d\tau \left(\frac{\phi''^2}{\phi'^2} - \phi'^2\right)\right]$$

- Generalization for 4d/3d holography
- Study wide variety of physical consequences
- Generalizations of TT deformations and Banados metric?
- ... and much more ...

Integrable Structures in Low-dimensional Holography and Cosmology

R.C.Rashkov*†

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more
Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

・ロト・西ト・モン・ビー もんぐ

15 years SEENET - Congratulations!

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

15 years SEENET - Congratulations!

ΤΗΑΝΚΥΟυ!

Integrable Structures in Low-dimensional Holography and Cosmology

$R.C.Rashkov^{*\dagger}$

Outline

Möbius structure of entanlement entropy: Aharonov invariants and dToda tau-function

Dispesionless Toda and entanglement entropy of excited states

Higher projective invariants and W-geometry

Higher spin holography and more

Final

・ロト ・雪 ト ・ヨ ト ・ ヨ ・ つくぐ