

LATEST HIGGS BOSON PHYSICS RESULTS @ LHC **AND PROSPECTS FOR PHYSICS PERFORMANCE @ HL-LHC**

P. Milenovic (CERN), on behalf of ATLAS and CMS Collaborations AWLC'17, SLAC, 26-30 June 2017

LATEST HIGGS BOSON PHYSICS RESULTS @ LHC AND PROSPECTS FOR PHYSICS PERFORMANCE @ HL-LHC

P. Milenovic (CERN), on behalf of ATLAS and CMS Collaborations AWLC'17, SLAC, 26-30 June 2017

Preface

Higgs discovery: Triumph of LHC and its experiments @ Run I

- After the discovery, emphasis shifted towards measurements of properties of the new particle.
- All Run1 results indicate SM-like Higgs boson!

Run 2: Further characterisation of the Higgs boson

Preface

Excellence of LHC and its experiments: Enabled quick start and rich physics program @ 13 TeV in early years of Run 2

- **LHC**: more effective bunch collision schemes, increased machine availability (x2).
- **Experiments**: improved performance at high pile-up (and operation efficiency). lacksquare

Performed a plethora of SM measurements and searches for new physics:

Run 2: Exploit the Higgs boson as a tool to probe for new physics

Latest Higgs boson measurements @ 13TeV

Characterisation of the SM Higgs boson: • Measurement of properties in $H \rightarrow 4\ell$, and $H \rightarrow \gamma\gamma$ Probing of Yukawa interactions in ttH, $H \rightarrow \mu\mu$, $H \rightarrow \tau\tau$, and $H \rightarrow bb$ Probing of its self-couplings in pp → HH

[*] predominantly presented results obtained with 36 fb⁻¹

$H \rightarrow 4\ell$ measurements

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow 4\ell$: Analyses approaches

Exploit full decay-, production-, and object-related information:

- Clean signature, good $m_{4\ell}$ resolution (1-2%). Low irreducible/reducible backgrounds (estimated from MC/data).
- **Even categorisation**: Based on **event topology** and **ME-based discriminants**

AWLC'17, SLAC, 26-30th June, 2017

CMS-HIG-76-047

$H \rightarrow 4\ell$: Production modes

CMS-HIG-16-047 Extract info on H couplings by performing simultaneous 2D fit in seven categories.

Sig. strengths per category + per production mode.

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow 4\ell$: Production modes

CN1S-141G-76-047 Extract info on H couplings by performing simultaneous 2D fit in seven categories.

Sig. strengths per category + per production mode. And as "simplified" cross sections:

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow 4\ell$: Mass

Perform 3D fit (m₄, D_{m4}, D^{kin}_{bkg}) using the Z-mass constraint:

- **Per-event m**₄₁ uncertainty D_{m41} : From lepton p_T uncertainties (corr. Z $\rightarrow \ell^+ \ell^-$)
- **Z-mass constraint:** Kinematic refitting of Z_1 lepton p_T , to exploit m_{Z_1} expectation

Higgs boson measurements at LHC and prospects at HL-LHC

(0.18% precision) **49 MeV better then expected**

$H \rightarrow 4\ell$: Fiducial cross sections

Measurements of a fiducial cross section:

- Measure within fiducial phase space to minimise model dependence
- Not sensitive to production mechanism, but expected to be dominated by gluon fusion

Higgs boson measurements at LHC and prospects at HL-LHC

AWLC'17, SLAC, 26-30th June, 2017

ATLAS-CONF. 2017-03:

$H \rightarrow 4\ell$: Fiducial cross sections

Measurements of a fiducial cross section:

- Measure within fiducial phase space to minimise model dependence
- **Differential measurements** for: $p_T(4I)$, N(jets), $p_T(jet)$, Y(4I), $|cos\theta*|$, $\Delta \phi(jj)$ and m_{34}
- Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, PDFs, etc.

рт(4I) : CMS

Higgs boson measurements at LHC and prospects at HL-LHC

рт(4I) : ATLAS

AWLC'17, SLAC, 26-30th June, 2017

ATLAS-CONF-2017-03:

$H \rightarrow 4\ell$: Fiducial cross sections

σ [fb]

Theory

Data/T

Measurements of a fiducial cross section:

- Measure within fiducial phase space to minimise model dependence
- **Differential measurements** for: $p_T(4I)$, N(jets), $p_T(jet)$, Y(4I), $|cos\theta*|$, $\Delta \phi(jj)$ and m_{34}
- Sensitive to modelling of hard quark and gluon radiation, relative contributions of different production modes, BSM effects in the loops, PDFs, etc.

N(jets) : CMS

Higgs boson measurements at LHC and prospects at HL-LHC

N(jets): ATLAS

AWLC'17, SLAC, 26-30th June, 2017

ATLAS.CONF. 2017-03:

$H \rightarrow \gamma \gamma$ measurements

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow \gamma\gamma$: Analysis approaches

Exploit clean signature and good $m_{\gamma\gamma}$ resolution

- Even categorisation: Based on mass resolution and S/B in the VBF, VH, ttH and gluon fusion categories
- Simultaneous fit to the di-photon $m_{\gamma\gamma}$ spectra in all cats.

I3 categories targeting 5 production modes:

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow \gamma\gamma$: Analysis approaches

- in the VBF, VH, ttH and gluon fusion categories
- Simultaneous fit to the di-photon m_{YY} spectra in all cats.

$H \rightarrow \gamma\gamma$: Production modes

ATLAS-CONF. 2016-067 Extract info on H production by performing simultaneous fit in 14 categories:

• A likelihood scan of the signal strength is performed, profiling all other nuisances including the Higgs mass.

Results presented in form of signal strengths per production mode, coupling modifiers, and as "simplified" cross sections:

- 3 categories to optimize signal significance based on
- Differential measurements of p_T(YY), Y(YY), N(jets)

$H \rightarrow \gamma \gamma + H \rightarrow ZZ \rightarrow 4I @ 7, 8, I3 TeV$

Higgs boson measurements at LHC and prospects at HL-LHC

Search for H production in association with top quark

Higgs boson measurements at LHC and prospects at HL-LHC

ttH: Analyses approaches

ttH production - direct probe of top Yukawa coupling:

• Tree-level process, XS proportional to λ_t^2 . Complementary evidence to loop-induced ggH.

• Several decay modes. Updated results for **leptonic searches for ttH production (H \rightarrow WW/ZZ/TT)**.

Higgs boson measurements at LHC and prospects at HL-LHC

CMS-PAS-HIG-17-004 CMS-PAS-HIG-17-0031

– – H σ_{ttH} ~ 507 fb⁻¹ @ I3TeV

"T_h+X " W^+

Irreducible: $tt+W/Z/\gamma*$ - from simulation, O(10%) uncertainty

Reducible: tt+jets or charge mis-assignment - from data, O(30%) uncertainty

Similar strategy for background estimate in the two analyses

ttH: Multileptonic and semi-had. $H \rightarrow TT$

Extensive use of MVA and ME-based methods for signal extraction:

Multileptonic categories (2lss, 3l, 4l): use kinematic BDTs against ttbar & ttW/Z, and/or lacksquare**ME likelihood ratio** for additional **ttW/Z** separation (counting experiment in 4ℓ category)

• Semi-nadronic categories $(3\ell + | T_h, 2\ell ss + | T_h, | \ell + 2T_h)$: use kinematic BDTs against ttbar & ttW/Z, and/or ME likelihood ratio for additional ttW/Z separation

Higgs boson measurements at LHC and prospects at HL-LHC

CMS-HIG-17-003/004

ttH, m	ttH, multilepton final states (
significance	3.3 σ (observed)				
	ttH, semi-hadron				
significance	I.4σ (observed)				

ttH: Results

Overview of measurements of ttH production by CMS and ATLAS @ I3 TeV:

Probing of H \rightarrow µµ couplings

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow \mu\mu$: Analyses & Results

Sensitivity to measure Higgs couplings to 2nd generation fermions:

- Clean signature, good m₂ resolution. Small BR of ~10⁻⁴. Irreducible background mainly $Z/\gamma^* \rightarrow \mu\mu$
- **Event cats.**: Use **BDTs** to separate VBF-like events. ggH-dominated cats. based on p_T and η of $\mu\mu$
- Simultaneous fit to the di-muon $m_{\mu\mu}$ spectra

Inclusive in categories

Combination of results @ 7, 8, 13 TeV:

ATLAS H \rightarrow µµ 7 + 8 + 13 TeV $\left| -0.13 \pm 1.4 \right|$

Higgs boson measurements at LHC and prospects at HL-LHC

ATLAS-CONF-2017-014

VBF tight category:

Probing of H → **TT couplings**

Higgs boson measurements at LHC and prospects at HL-LHC

$H \rightarrow TT$: Analyses & Results

Sensitivity to measure Higgs couplings to 3rd generation fermions:

- Event cats.: 4 final states (eµ, μT_h, eT_h, T_hT_h) and 3 categories (0-jet, VBF and Boosted)
- Simultaneous fit in two kinematic observables that yield the best sensitivity for each signal region (2D) plus control regions (ID) for the tt, QCD and W+jets backgrounds.

VBF category, T_hT_h final state:

CINS-PAS-HIG-76-043

$H \rightarrow TT$: Analyses & Results

Sensitivity to measure Higgs couplings to 3rd generation fermions:

- Event cats.: 4 final states (eµ, μT_h, eT_h, T_hT_h) and 3 categories (0-jet, VBF and Boosted)
- Simultaneous fit in two kinematic observables that yield the best sensitivity for each signal region (2D) plus control regions (ID) for the tt, QCD and W+jets backgrounds.

25

Signal strength per category and final state:

Probing of H → **bb couplings**

Higgs boson measurements at LHC and prospects at HL-LHC

H → bb: Analyses & Results

Sensitivity to measure Higgs couplings to 2nd generation fermions :

- "boosted" $gg \rightarrow H \rightarrow bb$: Exploit boosted topologies: aim for H(125) produced with high p_T
- $H \rightarrow bb$ reconstructed as a single jet (using jet substructure & b-tagging techniques).
- Simultaneous fit of jet mass distribution (both for events that pass and fail b-tagging to extract QCD bkg).

Inclusive fit results:

CMS-PAS-HIG-17-070

Events categorised in bins of the jet p_T (450 - 1000 GeV)

Sensitivity to $Z \rightarrow bb$ process in single-jet topology

H → bb: Analyses & Results

Sensitivity to measure Higgs couplings to 2nd generation fermions :

- "boosted" $gg \rightarrow H \rightarrow bb$: Exploit boosted topologies: aim for H(125) produced with high p_T
- $H \rightarrow bb$ reconstructed as a single jet (using jet substructure & b-tagging techniques).
- Simultaneous fit of jet mass distribution (both for events that pass and fail b-tagging to extract QCD bkg).

	Η	Ζ
Observed best fit	$\mu H = 2.3^{+1.8}_{-1.6}$	$\mu Z = 0.78^{+0.23}_{-0.19}$
Expected significance	$0.7\sigma (\mu H = 1)$	$5.8\sigma (\mu_Z = 1)$
Observed significance	1.5σ	5.1σ

& Results eneration fermions : n for H(125) produced with high pT re & b-tagging techniques). t pass and fail b-tagging - to extract QCD bkg).

H → bb: Analyses & Results

Sensitivity to measure Higgs couplings to 2nd generation fermions :

- Aim for SM Higgs boson produced in association with W or Z $(Z \rightarrow vv, W \rightarrow \ell v, and Z \rightarrow \ell \ell)$.
- Event cats: based on b-tagging, number of leptons, number of jets, and kinematics.
- Simultaneous fit of several MVA discriminants (one per cat.).

Verified by extracting the $W/Z \rightarrow bb$ process

ATLAS-CONF-2016-097

Obs. (exp.) significance 0.4 (1.9) [still limited statistics of 13 fb⁻¹]

Searching for pp → HH pair production

Higgs boson measurements at LHC and prospects at HL-LHC

HH: Analyses approaches

Tool to extract Higgs boson trilinear coupling λ_{HHH} :

• Probe the shape of the scalar Higgs potential.

- **Resonant production X \rightarrow HH:** Probe for BSM phenomena.
- Non-resonant production: Probe for anomalous λ_{HHH} and Y_t couplings and 3 new contact interactions.
- Several decay modes. Strongest limits from $HH \rightarrow bbbb$. New results for HH \rightarrow **bbtt** and HH \rightarrow **bbVV(\ell v \ell v)** searches.

Higgs boson measurements at LHC and prospects at HL-LHC

$\sigma_{HH} \sim 33.5 \text{ fb}^{-1}$ @ I3TeV (NNLO + NNLL)

$\mathbf{HH: HH} \rightarrow \mathbf{bbtt}$

Analysis approach:

- 3 TT flavors: eT_h , μT_h , $T_h T_h$
- bb cats.: 2 btag, I btag, I boosted jet
- ID fit: тнн (resonant), тт2 (non-resonant)

Results:

• Limits on σ/σ_{SM} as function of **ms** and **(kt, k**) $\sigma_{HH}/\sigma_{SM} < 28$ (25 exp.)

Analysis approach:

- 3 TT flavors: eT_h , μT_h , $T_h T_h$
- bb cats.: 2 btag, I btag, I boosted jet
- **ID fit: mhh** (resonant), **mt**₂ (non-resonant)

Results:

• Limits on σ/σ_{SM} as function of **ms** and **(kt, k**)

CMS preliminary 35.9 fb⁻¹ (13 TeV) (1000) للم 90 عرب 1000 مرب 1000 مرب bb $\mu \tau_h$ + bb $e \tau_h$ + bb $\tau_h \tau_h$ Observed Expected CLs Combined channels Expected $\pm 1\sigma$ Expected $\pm 2\sigma$ Theory prediction $B(HH \rightarrow$ 700 600 × 500 b CO 400 5 300 5% 200 S 100 20 30 -20 -10 10 0 k_{λ}/k_{t}

Higgs boson measurements at LHC and prospects at HL-LHC

HH: HH \rightarrow bbVV($\ell \nu \ell \nu)$)

Analysis approach:

- 3 $\ell\ell$ flavors: e⁺e⁻, $\mu^+\mu^-$, e[±] μ^{\mp}
- **ID fit** with parameterized **DNN** output

Results:

ata / MC • Limits on σ/σ_{SM} as function of m_X and (k_T, k_λ)

 $\sigma_{\rm HH}/\sigma_{\rm SM} < 79$ (89 exp.)

HH: Results (ATL

AS +	CMS)
-------------	------

AS + CI		IS)	L	CM CMS ATLAS	S-1 P	AS.HIG.	
AS CMS L [fb ⁻¹] L [fb ⁻¹]						NF-2016	-002 -006 -049
3.3 6-049 PAS-HIG-16-002 PAS-B2G-16-008 .2 16-004 PAS-HIG-16-032		Chan.	Obs	. (exp.) 95% C	C.L.	limit on σ/σ _{SM}	
3.3 16-071		bbbb	2	29 (38)	3	842 (308)	
PAS-HIG-17-006		bbVV		-		79 (89) □	
PAS-HIG-17-002		bbττ		-		28 (25)	
		bbγγ	11	7 (161)		91 (90)	
		WWγγ	74	47 (386)		-	
		2.3-3.2 fb ⁻ : Test of an	1 omalo	13.3 fb ⁻¹ ous HH couplin	gs	35.9 fb ⁻¹	
3000 500	0						
m _x [GeV]							

Latest Higgs boson measurements @ 13TeV

Search for BSM phenomena in Higgs physics:

- Probing for anomalous HVV interactions in $H \rightarrow 4\ell$ •
- Searching for additional scalar resonances •
- Search for BSM signatures of the Higgs boson in: $H \rightarrow \gamma \gamma / bb + E_{Tmiss}$ (DM) and $H \rightarrow \mu T / eT$ (LFV)

[*] predominantly presented results obtained with 36 fb⁻¹

$H \rightarrow 4\ell$: Anomalous couplings

Exploit full decay-, and production-related information:

- **Parametrisation of** $\underbrace{\underset{\nu_{1}}{\mathsf{SM}}}_{\mathsf{VV}} + \underbrace{\frac{k_{1}^{\mathsf{VV}}q_{1}^{2} + \kappa_{2}^{\mathsf{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\mathsf{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathsf{VV}}(q_{1}+q_{2})^{2}}{\left(\Lambda_{0}^{\mathsf{VV}}\right)^{2}}}_{\left(\Lambda_{0}^{\mathsf{VV}}\right)^{2}} + \underbrace{\frac{k_{3}^{\mathsf{VV}}(q_{1}+q_{2})^{2}}{\left(\Lambda_{0}^{\mathsf{VV}}\right)^{2}}}_{\mathsf{V1}} + \underbrace{\frac{k_{3}^{\mathsf{VV}}(q_{1}+q_{2})^{2}}{\left(\Lambda_{0}^{\mathsf{VV}}\right)^{2}}}_{\mathsf{V2}} + \underbrace{\frac{k_{3}^{\mathsf{VV}}(q_{1}+q_{2})^{2}}}_{\mathsf{V1}} + \underbrace{\frac{k_{$ $A = rac{1}{v}$ decay amplitude:
- Untagged, VBF, VH categories: 3 ME-based discriminants encoding both decay and production information

" CMS-PAS-HIG-77-077

$H \rightarrow 4\ell$: Anomalous couplings

Exploit full decay-, and production-related information:

Higgs boson measurements at LHC and prospects at HL-LHC

	Runl exp
Expected	(HZZ+HWW):
$0.000^{+0.017}_{-0.017} \left[-0.32, 0.32\right]$	$0^{+0.23}_{-0.23}$
$0.000^{+0.015}_{-0.014} \left[-0.08, 0.29 ight]$	$0^{+0.08}_{-0.03}$
$0.000^{+0.014}_{-0.014} \left[-0.79, 0.15\right]$	$0^{+0.15}_{-0.08}$
$0.000^{+0.020}_{-0.024} \left[-0.49, 0.80\right]$	

AWLC'17, SLAC, 26-30th June, 2017

CMS-PAS-HIG-77-077

- **Event categorisation**: Use **E_{Tmiss} significance** and magnitude of **vectorial sum of y and jets.**
- Simultaneous fit to the di-photon m_{yy} spectra.

 Upper limits on the (simplified) DM production and on heavy scalar production

"Dark Matter": H → bb + E_{Tmiss}

ATLAS-CONF. 2017-028 Searches for BSM phenomena (DM) with $H \rightarrow bb$ and E_{Tmiss} signature:

- Two categories: with resolved jets (MET < 500 GeV) and merged jets (MET > 500 GeV).
- Simultaneous fit to the di-jet m_{\parallel} spectra.

Upper limits on the (simplified) DM production

From here into the (near-term) future...

LHC goals for 2017 and 2018: 45 fb⁻¹ per year (with ~50% availability of stable beams)

Immediate attention by experiments:

- Readiness for data taking and analysis in 2017 (and for Phase II Upgrade TDRs)
- Preparatory discussions between experiments (and TH colleagues) for LHC combination:
 - mass and differential fiducial XS (towards the end of 2017),
 - overall couplings and simplified cross sections (end of 2017 or after).

Towards the long-term future: HL-LHC

From the early discovery machine ... to the Higgs factory and its full discovery potential

HL-LHC - topography of our particle physics knowledge:

- Deeper understanding of the Higgs boson (couplings, potential).
- Precision measurements in QCD, EWK, Higgs (ultimate goal O(1%)).
- Probing new physics phenomena (directly & via precision measurements).

Challenges for the experiments:

- Major experiment upgrades needed to improve radiation hardness, replace detectors at end-of-life or extend coverage,
- Provide handles to mitigate pileup and maintain/improve trigger acceptance.

Physics performance (a) **HL-LHC**

Prospects for Higgs boson physics at HL-LHC: Precision measurements of H(125) properties in $H \rightarrow \gamma\gamma$ and $H \rightarrow 4\ell$ Probing/measurement of rare decays and couplings Measurement of its self-couplings in $pp \rightarrow HH$

No phenomenon is a true phenomenon until it is an observed phenomenon. John A. Wheeler

Analysis techniques & extrapolation strategies

ATLAS HL-LHC analysis techniques:

- I4 TeV collision energy and I40 or 200 PU
- Simulate detector response by smearing p_T and E of physics objects,
- Emulate triggers with trigger efficiency functions

CMS fast simulation for HL-LHC:

- I4 TeV collision energy and 200 PU
- Parameterised Delphes simulation

CMS extrapolation strategy:

- Public results @13 TeV are extrapolated to larger data sets (300 and 3000 fb⁻¹).
- Extrapolations are presented under different scenarios for the evolution of uncertainties.

	systematics	exp. sys.	theo. sys.	high PU	
	unchanged	scaled* $1/\sqrt{L}$	scaled 1/2	effects	
ECFA16 S1	\checkmark	×	X	×	
ECFA16 S1+	\checkmark	×	×	\checkmark	
ECFA16 S2	×	\checkmark	\checkmark	×	
ECFA16 S2+	×	\checkmark	\checkmark	\checkmark	

Validated with full simulation

H(125) properties in H $\rightarrow \gamma\gamma$ @ HL-LHC

Performance estimated using the $H \rightarrow \gamma \gamma$ analysis @12.9 fb⁻¹ (13 TeV).

Effects of high pileup and detector performance @3ab⁻¹ estimated:

- The beamspot is simulated to have $\sigma z \sim 5~cm$
- Vertex identification reduced from 80% to 40%
- Photon ID efficiency decreased by 2.3% (10%) in EB (EE)

Signal strength per production mode

Higgs boson measurements at LHC and prospects at HL-LHC

$\rightarrow YY \textcircled{O} HL-LHC \xrightarrow{V_{NS}} A_{S} \xrightarrow{V_{N-16}} U_{U}$ is @12.9 fb⁻¹ (13 ToY)

Fiducial XS measurements

H(125) properties in H $\rightarrow 4\ell$ @ HL-LHC

Performance estimated using the $H \rightarrow 4\ell$ analysis @12.9 fb⁻¹ (13 TeV).

Effects of high pileup and detector performance @3ab⁻¹ estimated:

- Lepton misidentification rates
- Lepton efficiencies decreased accordingly for muons/electrons

Signal strength per production mode

Higgs boson measurements at LHC and prospects at HL-LHC

" CMIS-PAS-FIN-76-UU:

Differential $p_T(H)$ cross section

H(125) properties in H $\rightarrow 4\ell @$ HL-LHC

Performance estimated using the simplified version of $H \rightarrow 4\ell$ analysis @ 8 TeV.

- H(125) off-shell production exploited to constrain its decay width $\Gamma_{\rm H}$
- Lepton efficiencies assumed to be preserved
- Limits on Γ_H extracted assuming SM-like Higgs boson (YR4 : Γ_{SM} = 4.10 MeV @ m_H=125.09 GeV)

m₄*e* and off-shell production:

Higgs boson measurements at LHC and prospects at HL-LHC

ME discriminant:

H(125) self-couplings @ HL-LHC

"CMS-PAS-FTR-76-002 Performance estimated using the pp \rightarrow HH analyses with 2015 data (13 TeV).

• Probe the shape of the scalar Higgs potential.

• Results for several decay modes: $HH \rightarrow bb\tau\tau / bb\gamma\gamma / bbVV / bbbb$.

	Median e	xpected	Z-value		Uncertainty	
	limits	in µ _r			as fraction of $\mu_r = 1$	
Channel	ECFA16 S2	Stat. Only	ECFA16 S2	Stat. Only	ECFA16 S2	Stat. Only
$gg ightarrow HH ightarrow \gamma \gamma bb$ (S2+)	1.3	1.3	1.6	1.6	0.64	0.64
gg ightarrow HH ightarrow au au bb	5.2	3.9	0.39	0.53	2.6	1.9
gg ightarrow HH ightarrow VVbb	4.8	4.6	0.45	0.47	2.4	2.3
gg ightarrow HH ightarrow bbbb	7.0	2.9	0.39	0.67	2.5	1.5

H(125) self-couplings @ HL-LHC

CNIS-PAS-FTR-16-002 Performance estimated using the pp \rightarrow HH analyses with 2015 data (13 TeV).

• Probe the shape of the scalar Higgs potential.

• Results for several decay modes: $HH \rightarrow bb\tau\tau / bb\gamma\gamma / bbVV / bbbb$.

Higgs boson measurements at LHC and prospects at HL-LHC

σ_{HH} ~ 33.5 fb⁻¹ @ I3TeV (NNLO + NNLL)

H(125) self-couplings @ HL-LHC

Performance estimated using the simplified $pp \rightarrow HH$ analyses (13 TeV).

• Probe the shape of the scalar Higgs potential.

• Results for decay modes: $HH \rightarrow bb\gamma\gamma$ / bbbb, and ttHH production (HH \rightarrow bbbb, semi-leptonic tt)

$HH \rightarrow bb\gamma\gamma$

σ(pp→ HH → b $\overline{b}\gamma\gamma$) [fb]

σ_{HH} ~ 33.5 fb⁻¹ @ I3TeV (NNLO + NNLL)

production (HH \rightarrow bbbb, semi-leptonic tt) HH \rightarrow bbbb (trigger p_T > 75 GeV)

Physics performance (a) **HL-LHC**

Good tests kill flawed theories; we remain alive to guess again. Sir Karl Raimund Popper-

Prospects for new physics at HL-LHC:

- Probing for anomalous HVV interactions in $H \rightarrow 4\ell$
- Searches for SUSY and DM signatures
- Direct observation of new resonances (Z', W')

" CMS-PAS-FIR-16-UU: **Anomalous HZZ interactions @ HL-LHC**

Performance estimated using the $H \rightarrow 4\ell$ analysis @12.9 fb⁻¹ (13 TeV).

SM leading momentum expansion higher order cp-even Parameterisation of $A = \frac{1}{v} \checkmark$ $\frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{(\Lambda \text{VV})^2} + \frac{\kappa_3^{\text{VV}} (q_1 + q_2)^2}{(\Lambda \text{VV})^2} \left[m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_2^{\text{VV}} f^{*(2),\mu\nu} + a_2^{\text{$ decay amplitude:

Effects of high pileup and detector performance @3ab⁻¹ estimated:

• Lepton misidentification rates, and efficiencies

Higgs boson measurements at LHC and prospects at HL-LHC

cp-odd $VVf*(1) \tilde{f}*(2), \mu\nu$

Towards the small values of fractional presence sensitivity pre-dominantly comes from the interference effects between different decay amplitude terms

Projected 95% Cls:

Parameter	$300 {\rm ~fb^{-1}}$	$3000 \ {\rm fb}^{-1}$		
$f_{a3} \times cos(\phi_{a3})$	[-0.094, 0.094]	[-0.012, 0.012]		
$f_{\Lambda 1} \times \cos(\varphi_{\Lambda 1})$	[-0.14, 0.05]	[-0.010, 0.0072]		

SUSY searches @ **HL-LHC**

Performance estimated using the (simplified) analyses

- **Direct stau pair production:** Simplified models, assume 100% BR of $\tau \rightarrow \tau \chi^0$
 - Main background: W+jets, ttbar
- **Direct stop pair production:** Compressed mass spectra
 - Low stop neutralino mass difference, channel needs high luminosity
- **Parameterised detector response** (resolution, efficiencies, misidentification rates)

Direct stau pair production:

ATI-PHYS-PUB-2016-022

Direct stop pair production:

Discovery reach m(stop) < 500 GeV

New resonances @ HL-LHC

Performance estimated using the Z' and W' searches @ 13 TeV.

- W' \rightarrow tb \rightarrow bb ℓv : high-p_T lepton, significant E_{Tmiss}, two b-jets
- $\mathbf{Z'} \rightarrow \mathbf{tt} \rightarrow \ell \mathbf{vb} \mathbf{qq'b} / \mathbf{qq'b} \mathbf{qq'b}$: Exploit boosted topologies

Effects of high pileup and detector performance @3ab⁻¹

• Lepton efficiencies assumed to be preserved, systematics (likely conservative) adopted to diff. scenarios.

Higgs boson measurements at LHC and prospects at HL-LHC

Summary

Measurements @ 7, 8, 13 TeV indicate the SM-like Higgs boson

• Understanding of the true nature of the Higgs boson is one of the central subjects in the particles physics today

Near-term future measurements @ 13/14 TeV might provides us with some hints...

Higgs boson might offer a portal to the new physics phenomena

Upgrades to HL-LHC will enable full discovery potential

- Major effort of the community of theoretical and experimental physicists is required (and is already ongoing)
- Estimates of the HL-LHC performance are already encouraging

Next-generation accelerators and experiments are key to the future of particles physics and to our understanding of the Nature

If your experiment needs statistics, you ought to have done a better experiment. E. Rutherford

