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GW170817 = GRB170817A 

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
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:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.
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GW170817 = GRB170817A 

•   Previous tight limit for GWs slower than light, Cherenkov radiation
One-sided and only valid for high energy

•   Low energy:   ω-1 ∼ 10 000 km

Reasonable one can use the same EFT one has on cosmo scales

•   Over ~ cosmological distances:  40 Mpc

Screening can (probably) be neglected

of 5.3s. This unambiguous association confirms that BNS
mergers are progenitors of (at least some) SGRBs.

4. Implications for Fundamental Physics

Little or no arrival delay between photons and GWs over
cosmological distances is expected as the intrinsic emission
times are similar and the propagation speeds of EM and GWs
are thought to be identical. In this Section we discuss the
implications on fundamental physics of the temporal offset of

1.74 0.05 s+ o( ) measured between GW170817 and
GRB170817A.

Standard EM theory minimally coupled to general relativity
predicts that GWs and light propagate with identical speeds.
The refractive index of vacuum is expected to be unity, and
both waves are expected to be affected by background
gravitational potentials in the same way. The arrival delay of
only a few seconds across a distance greater than one hundred
million light years places stringent constraints on deviations
from fundamental principles. We use the observed temporal
offset, the distance to the source, and the expected emission-
time difference to place constraints on the deviation of the
speed of gravity from the speed of light, and on violations of
Lorentz invariance and the equivalence principle.

4.1. Speed of Gravity

Assuming a small difference in travel time tD between
photons and GWs, and the known travel distance D, the
fractional speed difference during the trip can be written

v v v t DEM EMD » D , where v v vGW EMD = - is the differ-
ence between the speed of gravity vGW and the speed of light
vEM. This relation is less constraining for small distances, hence
we conservatively use here D 26 Mpc= , the lower bound of
the 90% credible interval on luminosity distance derived from
the GW signal (Abbott et al. 2017e). If we conservatively
assume that the peak of the GW signal and the first photons
were emitted simultaneously, attributing the entire

1.74 0.05 s+ o( ) lag to faster travel by the GW signal, this
time difference provides an upper bound on vD . To obtain a
lower bound on vD , one can assume that the two signals were
emitted at times differing by more than 1.74 0.05 s+ o( ) with
the faster EM signal making up some of the difference. As a
conservative bound relative to the few second delays discussed
in Section 2.1, we assume the SGRB signal was emitted 10 s
after the GW signal. The resulting constraint on the fractional
speed difference is

v
v
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The intergalactic medium dispersion has negligible impact on
the gamma-ray photon speed, with an expected propagation
delay many orders of magnitude smaller than our errors
on vGW.

Lags much longer than 10 s are proposed in alternative
models (e.g., Ciolfi & Siegel 2015; Rezzolla & Kumar 2015),
and emission of photons before the merger is also possible
(Tsang et al. 2012). Hence, certain exotic scenarios can extend
this time difference window to (−100 s, 1000 s), yielding a 2
orders of magnitude broadening of the allowed velocity range
on either side. While the emission times of the two messengers
are inherently model dependent, conservative assumptions
yield dramatic improvements over existing indirect (Kostelecky

& Russell 2017) and direct (Cornish et al. 2017) constraints,
which allow for time differences of more than 1000 years.
Future joint GW–GRB detection should allow disentangling
the emission time difference from the relative propagation time,
as only the latter is expected to depend on distance.

4.2. Lorentz Invariance Violation Limits

Within a comprehensive effective field theory description of
Lorentz violation (Colladay & Kostelecký 1997, 1998;
Kostelecký 2004; Tasson 2014), the relative group velocity
of GWs and EM waves, is controlled by differences in
coefficients for Lorentz violation in the gravitational sector and
the photon sector at each mass dimension d (Kostelecký &
Mewes 2016, 2009, 2008; Wei et al. 2017). We focus here on
the non-birefringent, non-dispersive limit at mass dimension
d=4, as it yields by far the most impressive results. In this
case, the difference in group velocities for the two sectors takes
the form
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The result is presented in a spherical harmonic, Yℓm, basis, sℓm
4( )

and c I ℓm
4

( )
( ) being spherical-basis coefficients for Lorentz violation

in the gravitational and EM sectors, respectively. The direction n̂
refers to the sky position (provided in Coulter et al. 2017a,
2017b).
For ease of comparison with the many existing sensitivities

(Shao 2014a, 2014b; Shao et al. 2017; Kostelecký & Tasson
2015; Bourgoin et al. 2016; Le Poncin-Lafitte et al. 2016;
Kostelecky & Russell 2017) to the d=4 gravity-sector
coefficients (Bailey & Kostelecký 2006; Hees et al. 2016), an
analysis in which the coefficients are constrained one at a time
is useful (Flowers et al. 2016), with all other coefficients,
including the EM sector ones, set to zero. These results are
presented in Table 1 along with the best constraints for each
coefficient prior to this work. These results can be compared
with the isotropic A, LVa Lorentz violation parametrization
(Mirshekari et al. 2012) used by Abbott et al. (2017c) in
dispersive GW tests. The 2LVa = limit of this parametrization
is equivalent to the isotropic limit of the framework discussed
above, with s A400

4 pl( ) . Constraints on A for 2LVa = can
be obtained from the first line of Table 1; these cannot be
established within the analysis carried out in Abbott et al.
(2017c).

4.3. Test of the Equivalence Principle

Probing whether EM radiation and GWs are affected by
background gravitational potentials in the same way is a test of
the equivalence principle (Will 2014). One way to achieve this
is to use the Shapiro effect (Shapiro 1964), which predicts that
the propagation time of massless particles in curved spacetime,
i.e., through gravitational fields, is slightly increased with
respect to the flat spacetime case. We will consider the
following simple parametrized form of the Shapiro delay
(Krauss & Tremaine 1988; Longo 1988; Gao et al. 2015;
Kahya & Desai 2016):
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The Universe accelerates

⇤



Dark Energy = Lorentz violating Medium

In general the speed of GWs is different from photons



EFT for Dark Energy

Constructing the action

✦   Use metric quantities in uniform scalar field slicing

Nnµ

N i

hij

 ADM decomposition

ds2 = �N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj)

✦   Lagrangian contains all possible scalars under spatial diffs, ordered by number of 
perturbations and derivatives
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(ḣij �riNj �rjNi)

⇠ @2gij

Cheung et al. 07

Parametrization of possible deviation from CC

Constructing the action

✦   Use metric quantities in uniform scalar field slicing

Nnµ

N i

hij

 ADM decomposition

ds2 = �N2dt2 + hij(N
idt+ dxi)(N jdt+ dxj)

✦   Lagrangian contains all possible scalars under spatial diffs, ordered by number of 
perturbations and derivatives

�̇(t) 6= 0

S =

Z
d4x

p
�gL[t;N,Ki

j ,
(3)Ri

j , . . .]

 Lapse

 Extrinsic curvature

 Intrinsic curvature

N

Kij

(3)Rij

(@�)2 = ��̇2
0(t)/N

2⇠ �̇

⇠ @tgij Kij =
1

2N
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Action contains all possible scalars under spatial diffs, ordered by number 
of perturbations and derivatives

Assume universal metric coupled to SM and DM 

PC, Luty, Nicolis, Senatore 03
+ Vernizzi, Piazza + many others
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Dark Energy after GW170817
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(Dated: October 17, 2017)

The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

m
4
2 = ↵KH

2
M

2
⇤ For LSS we are interested in the regime α ~ 0.1

Focus on theories with second order EOM
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Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of
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patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
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der quantum corrections due to the non-renormalization prop-
erties of these theories.
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Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
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δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

Speed of sound 
of DE

DGP and braiding 
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

Non-linear terms, 
screening

Horndeski: most generic theory with 2nd 
        order EOM

Beyond Horndeski: terms with more than 2 
 derivatives, but they cancel 

2

in Horndeski (for m̃2
4 = m2

4 and m̃6 = m6) and beyond Horn-
deski theories. At quadratic order, it has been introduced in
[16]. At higher order, we have written only the operators that
contribute to the leading number of spatial derivatives. These
dominate the nonlinear regime of structure formation and the
Vainshtein regime (see e.g. [17, 18] and [19] for details). At
quintic or higher order there are no such operators. The other
operators present in Horndeski and beyond Horndeski theories
are not explicitly written but will be discussed below. More
general higher-order operators will be considered below.

In eq. (1), GWs only enter in the 4d and 3d Ricci tensor and
in the trace-free part of Kν

µ . At quadratic order, the operator

m2
4δK2 contributes to the graviton kinetic energy, changing

the normalization of the effective Planck mass—which be-
comes M2 ≡ M2

∗ f + 2m2
4—modifying the propagation speed

of gravitational waves [16, 20],

c2
T − 1 =−2m2

4/M2 . (3)

(Notice that m2
4 can have either signs, it is written as a square

just to keep track of dimensions.) Thus, the constraint of
GW170817 implies that the coefficient of the operator m2

4δK2

must be extremely small,

m2
4 = 0 . (4)

However, the value of this parameter depends on the partic-
ular background the EFT is expanded around. In particular, by
changing by a tiny amount the Hubble expansion or the back-
ground energy density of the scalar (or, correspondingly, the
dark matter abundance) the coefficients of the EFT action get
reshuffled. A change in the background appears in the EFT
action as a background value for δg00 and δK. To robustly
set to zero m2

4 we should set to zero also all those operators
that can generate it by a small change of the background so-
lution. As an example, consider m2

5δg00δK2. When δg00 is
evaluated on the background, this operator becomes quadratic
and shifts the parameter m2

4, i.e., δm2
4 = m2

5δg00
bkgd/2. How-

ever, the change in c2
T can be compensated by the operator

m̃2
4δg00R if m̃2

4 is chosen appropriately. By choosing

m̃2
4 = m2

5 (= 0 in Horndeski) , (5)

these two operators combine to change the overall normal-
ization of the graviton action, keeping the graviton on the
light-cone. (In Horndeski: m4 = m̃4 = 0.) The same tuning
must hold for operators with more powers of δg00 that have
not been explicitly included in the action, such as (δg00)2R,
(δg00)2δK2, etc.

Let us consider the remaining operators, starting with
m6δK3. When one of the δKν

µ or δK in the cubic expres-

sion for δK3 is evaluated on the background, this operator
becomes quadratic and contributes to m2

4. Using (δKν
µ )bkgd =

δHbkgdδ ν
µ one finds δm2

4 = δHbkgdm6. Notice that the depen-

dence on the background is through δHbkgd and not through

δg00
bkgd, so that its contribution cannot be compensated by nei-

ther m̃2
4 nor m2

5. It is easy to get convinced that the same hap-

pens for m̃6 and m7. When δg00 is evaluated on the back-
ground, upon use of eq. (8) of [16] one finds that the operator

m̃6 shifts m2
4 by δm2

4 = − 1
2(m̃6δg00

bkgd)
·. Finally, the operator

m7 induces δm2
4 = m7δg00

bkgdδHbkgd. Since the background

enters differently in all these operators, they must be precisely
set to zero,

m6 = m̃6 = m7 = 0 . (6)

As we will discuss below, the relations we found are stable
under radiative corrections.

Covariant action. Let us see how the constraints of
GW170817 on the EFT of Dark Energy translate for covariant
theories. In particular, we consider the action

S =
∫

d4x
√
−g∑

I

LI , (7)

where we have defined the Lagrangians

L2 ≡ G2(φ ,X) , L3 ≡ G3(φ ,X)!φ ,

L4 ≡ G4(φ ,X) (4)R− 2G4,X(φ ,X)(!φ2 −φ µνφµν)

+F4(φ ,X)εµνρ
σ εµ ′ν ′ρ ′σ φµφµ ′φνν ′φρρ ′ ,

L5 ≡ G5(φ ,X) (4)Gµνφ µν

+
1

3
G5,X(φ ,X)(!φ3 − 3!φ φµνφ µν + 2φµνφ µσ φν

σ )

+F5(φ ,X)εµνρσ εµ ′ν ′ρ ′σ ′
φµ φµ ′φνν ′φρρ ′φσσ ′ ,

(8)

that depend on a scalar field φ , X ≡ gµν∂µ φ∂ν φ and second
derivatives of the field. For convenience, we denote the scalar
field derivatives by φµ ≡ ∇µ φ , φµν ≡ ∇ν∇µ φ and !φ ≡ φ µ

µ .
The symbol εµνρσ is the totally antisymmetric Levi-Civita
tensor and a comma denotes a partial derivative with respect
to the argument. Horndeski theories are recovered by the con-
ditions F4(φ ,X) = 0 and F5(φ ,X) = 0, which guarantee that
the equations of motion are purely second order. If L5 = 0
(L4 = 0), it is possible to go beyond Horndeski by switching
on F4 ≠ 0 (F5 ≠ 0) without propagating more than one single
scalar and the graviton [14]. If both L4 and L5 are present, the
condition for the beyond Horndeski theories to be degenerate
[21] and propagate a single degree of freedom is

XG5,X F4 = 3F5

[

G4 − 2XG4,X − (X/2)G5,φ
]

, (9)

which can be obtained by imposing that both Lagrangians are
generated by the same disformal transformation [22]. In sum-
mary, the quartic and quintic Lagrangians of beyond Horn-
deski theories are described in terms of three independent
functions of φ and X

To compare with the EFT approach, let us write the relevant
parameters in eq. (1) in terms of the covariant functions G4,

2

in Horndeski (for m̃2
4 = m2

4 and m̃6 = m6) and beyond Horn-
deski theories. At quadratic order, it has been introduced in
[16]. At higher order, we have written only the operators that
contribute to the leading number of spatial derivatives. These
dominate the nonlinear regime of structure formation and the
Vainshtein regime (see e.g. [17, 18] and [19] for details). At
quintic or higher order there are no such operators. The other
operators present in Horndeski and beyond Horndeski theories
are not explicitly written but will be discussed below. More
general higher-order operators will be considered below.

In eq. (1), GWs only enter in the 4d and 3d Ricci tensor and
in the trace-free part of Kν

µ . At quadratic order, the operator

m2
4δK2 contributes to the graviton kinetic energy, changing

the normalization of the effective Planck mass—which be-
comes M2 ≡ M2

∗ f + 2m2
4—modifying the propagation speed

of gravitational waves [16, 20],

c2
T − 1 =−2m2

4/M2 . (3)

(Notice that m2
4 can have either signs, it is written as a square

just to keep track of dimensions.) Thus, the constraint of
GW170817 implies that the coefficient of the operator m2

4δK2

must be extremely small,

m2
4 = 0 . (4)

However, the value of this parameter depends on the partic-
ular background the EFT is expanded around. In particular, by
changing by a tiny amount the Hubble expansion or the back-
ground energy density of the scalar (or, correspondingly, the
dark matter abundance) the coefficients of the EFT action get
reshuffled. A change in the background appears in the EFT
action as a background value for δg00 and δK. To robustly
set to zero m2

4 we should set to zero also all those operators
that can generate it by a small change of the background so-
lution. As an example, consider m2

5δg00δK2. When δg00 is
evaluated on the background, this operator becomes quadratic
and shifts the parameter m2

4, i.e., δm2
4 = m2

5δg00
bkgd/2. How-

ever, the change in c2
T can be compensated by the operator

m̃2
4δg00R if m̃2

4 is chosen appropriately. By choosing

m̃2
4 = m2

5 (= 0 in Horndeski) , (5)

these two operators combine to change the overall normal-
ization of the graviton action, keeping the graviton on the
light-cone. (In Horndeski: m4 = m̃4 = 0.) The same tuning
must hold for operators with more powers of δg00 that have
not been explicitly included in the action, such as (δg00)2R,
(δg00)2δK2, etc.

Let us consider the remaining operators, starting with
m6δK3. When one of the δKν

µ or δK in the cubic expres-

sion for δK3 is evaluated on the background, this operator
becomes quadratic and contributes to m2

4. Using (δKν
µ )bkgd =

δHbkgdδ ν
µ one finds δm2

4 = δHbkgdm6. Notice that the depen-

dence on the background is through δHbkgd and not through

δg00
bkgd, so that its contribution cannot be compensated by nei-

ther m̃2
4 nor m2

5. It is easy to get convinced that the same hap-

pens for m̃6 and m7. When δg00 is evaluated on the back-
ground, upon use of eq. (8) of [16] one finds that the operator

m̃6 shifts m2
4 by δm2

4 = − 1
2(m̃6δg00

bkgd)
·. Finally, the operator

m7 induces δm2
4 = m7δg00

bkgdδHbkgd. Since the background

enters differently in all these operators, they must be precisely
set to zero,

m6 = m̃6 = m7 = 0 . (6)

As we will discuss below, the relations we found are stable
under radiative corrections.

Covariant action. Let us see how the constraints of
GW170817 on the EFT of Dark Energy translate for covariant
theories. In particular, we consider the action

S =
∫

d4x
√
−g∑

I

LI , (7)

where we have defined the Lagrangians

L2 ≡ G2(φ ,X) , L3 ≡ G3(φ ,X)!φ ,

L4 ≡ G4(φ ,X) (4)R− 2G4,X(φ ,X)(!φ2 −φ µνφµν)

+F4(φ ,X)εµνρ
σ εµ ′ν ′ρ ′σ φµφµ ′φνν ′φρρ ′ ,

L5 ≡ G5(φ ,X) (4)Gµνφ µν

+
1

3
G5,X(φ ,X)(!φ3 − 3!φ φµνφ µν + 2φµνφ µσ φν

σ )

+F5(φ ,X)εµνρσ εµ ′ν ′ρ ′σ ′
φµ φµ ′φνν ′φρρ ′φσσ ′ ,

(8)

that depend on a scalar field φ , X ≡ gµν∂µ φ∂ν φ and second
derivatives of the field. For convenience, we denote the scalar
field derivatives by φµ ≡ ∇µ φ , φµν ≡ ∇ν∇µ φ and !φ ≡ φ µ

µ .
The symbol εµνρσ is the totally antisymmetric Levi-Civita
tensor and a comma denotes a partial derivative with respect
to the argument. Horndeski theories are recovered by the con-
ditions F4(φ ,X) = 0 and F5(φ ,X) = 0, which guarantee that
the equations of motion are purely second order. If L5 = 0
(L4 = 0), it is possible to go beyond Horndeski by switching
on F4 ≠ 0 (F5 ≠ 0) without propagating more than one single
scalar and the graviton [14]. If both L4 and L5 are present, the
condition for the beyond Horndeski theories to be degenerate
[21] and propagate a single degree of freedom is

XG5,X F4 = 3F5

[

G4 − 2XG4,X − (X/2)G5,φ
]

, (9)

which can be obtained by imposing that both Lagrangians are
generated by the same disformal transformation [22]. In sum-
mary, the quartic and quintic Lagrangians of beyond Horn-
deski theories are described in terms of three independent
functions of φ and X

To compare with the EFT approach, let us write the relevant
parameters in eq. (1) in terms of the covariant functions G4,
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

Braiding, the scalar mixes with gravity

Different from usual Brans-Dicke, e.g. Φ = Ψ
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

3.3 Mixing proportional to m̄3
1

Here we consider in S(2)
DE of eq. (12) the operator m̄3

1 which can also produce kinetic mixing [9].
This operator is typically contained in galileon [40, 41, 47, 48] and braiding models [49], as we
discussed in Secs. 4.2 and 4.3. We can read off the effect of the Stueckelberg trick on this
operator from eqs. (8) and (11). In particular, in Newtonian gauge at linear order we have

δg00 → −2(π̇ − Φ) , δK → −(3Ψ̇+ a−2∇2π) . (55)

Thus, by keeping only the kinetic terms the action reads

S =

∫ √
−g

(

M2
∗

2
R− cg00 −

m̄3
1

2
δg00δK

)

kinetic→
∫

M2
∗

[

−3Ψ̇2 − 2∇⃗Φ∇⃗Ψ+ (∇⃗Ψ)2
]

+ cπ̇2 − c̃(∇⃗π)2 − 3m̄3
1Ψ̇π̇ − m̄3

1∇⃗Φ∇⃗π .
(56)

Here, as before, we have dropped the scale factor since we are considering scales much smaller
than Hubble. Also, we have defined

c̃ ≡ c+
1

2
(Hm̄3

1 + ˙̄m3
1) , (57)

where the second term on the right-hand side of this equation comes from integrating by parts
the piece −am̄3

1π̇∇2π.
It is handy to re-define the fields in such a way that they all have dimensions of mass as

follows,

πc ≡ c1/2π , Ψc ≡ M∗Ψ , Φc ≡ M∗Φ , α ≡
m̄3

1

2M∗c1/2
. (58)

The Lagrangian becomes

L = −3Ψ̇2
c − 2∇⃗Φc∇⃗Ψc + (∇⃗Ψc)

2 + π̇2
c − (c̃/c)(∇⃗πc)2 − 6αΨ̇cπ̇c − 2α∇⃗Φc∇⃗πc . (59)

In Fourier space, on the (ΨcΦcπc) basis, the Lagrangian is a 3× 3 matrix,

L ∼
(

Ψc Φc πc
)

⎛

⎜

⎝

−3ω2 + k2 −k2 −3αω2

−k2 0 −αk2

−3αω2 −αk2 ω2 − (c̃/c)k2

⎞

⎟

⎠

⎛

⎜

⎝

Ψc

Φc

πc

⎞

⎟

⎠
. (60)

The determinant evaluates

detL = −k4
[

ω2(1 + 3α2)− k2(c̃/c− α2)
]

, (61)

which corresponds to having one propagating degree of freedom with dispersion relation ω2 =
c2sk

2, where the sound speed c2s is

c2s =
c̃− 1

4m̄
6
1/M

2
∗

c+ 3
4m̄

6
1/M

2
∗

. (62)

Note that c2s can become negative, in which case one has a gradient instability. We will get
back to this point when we study the stability in Sec. 3.4.

17

field ⇡ and removes the higher derivative term from the gravitational action. This is explicitly
given by [28]

�E ⌘
1 + ↵H

1 + ↵T

�+

✓
1 + ↵M

1 + ↵T

�
1 + ↵B

1 + ↵H

◆
H⇡ �

↵H

1 + ↵T

⇡̇ ,

 E ⌘  +
↵H � ↵B

1 + ↵H

H⇡ .

(3.5)

Using these metric variables in the quadratic action and the definition (3.4) for vm, and writing
explicitly only the terms that are quadratic in derivatives, neglecting those that are irrelevant in
the kinetic limit, one finds the following action,

Skinetic =

Z
d
4
xa

3
M

2

⇢
� 3 ̇2

E +
1 + ↵T

a2

⇥
(r E)

2
� 2r�Er E

⇤

+
↵H

2

2(1 + ↵H)2

✓
1 +

c
2
s

c2m

�
2

◆
⇡̇
2
� c

2

s
(r⇡)2

a2

�

+
⇢m + pm

2c2mM
2


v̇
2

m � c
2

m

(rvm)
2

a2
+

2↵H

1 + ↵H

v̇m ⇡̇

��
,

(3.6)

where �
2 is the parameter encoding KMM, defined in eq. (2.17). Since here we are using the

Jordan frame metric, where ↵D,m = ↵X,m = 0, its definition reads

�
2 =

3

↵c2s
↵
2

H(1 + wm)⌦m , (3.7)

so that � is proportional to ↵H. Notice in the third line the presence of a kinetic coupling between
the scalar and matter fields, v̇m⇡̇, proportional to ↵H.

Moreover, at this order in derivatives the dynamics of ⇡ and vm is decoupled from that of �E

and  E and we can study them separately. To simplify the analysis, we introduce the canonically
normalized fields

⇡c ⌘
HM↵

1/2

1 + ↵H

⇡ , vc ⌘

✓
⇢m + pm

c2m

◆
1/2

vm , (3.8)

and we neglect the expansion of the universe, which is irrelevant in the kinetic limit. Then the
dynamics is described by the Lagrangian

L =
1

2

⇢✓
1 +

c
2
s

c2m

�
2

◆
⇡̇
2

c � c
2

s(r⇡c)
2 + v̇

2

c � c
2

m(rvc)
2 + 2

cs

cm
� v̇c ⇡̇c

�
. (3.9)

In Fourier space, this gives the coupled system of equations

d
2

dt2

✓
⇡c

vc

◆
+ k

2

✓
c
2
s �� cs cm

�� c
3
s/cm c

2
m + �

2
c
2
s

◆✓
⇡c

vc

◆
= 0 , (3.10)

with normal modes ✓
c
3
s�/cm c

2
� � c

2
s

�c
3
s�/cm c

2
s � c

2
+

◆✓
⇡c

vc

◆
, (3.11)

where c
2
± are the eigenvalues of the system, given by eq. (2.20).

11

Kinetic matter mixing
these results). As found in Ref. [14], a specific feature of this new class of theories is that it
exhibits a deviation from general relativity inside a region filled with matter, while the usual
Vainshtein screening is recovered just outside.

Considering a spherical object with a radial density profile denoted ρ(r), the radial
gravitational force in the nonrelativistic regime can be expressed as

dΦ

dr
= GN

(
M

r2
− ϵ

d2M

dr2

)
, (1.1)

where M(r) = 4π
∫ r
0
r′2ρ(r′)dr′ is the mass enclosed in the sphere of radius r. The last term

on the right hand side represents the deviation with respect to Newton’s law. It is propor-
tional to the radial derivative of the density, i.e. dρ/dr and its amplitude is characterized
by the parameter ϵ, which can be written explicitly in terms of the functions that appear
in the Lagrangian beyond Horndeski (See Ref. [14] and Appendix A for details). Although
our main motivation for studying the gravitational law (1.1) comes from the models beyond
Horndeski introduced in Refs. [11, 12], the main discussion in this paper is independent of the
underlying gravitational theory and thus applies to any theory leading to a phenomenological
modification of this type.

The expected consequence of a deviation of Newton’s law is a modification of the inter-
nal structure of any astrophysical body. This implies that modified gravity can in principle
be constrained from observations of astrophysical objects whose internal physics is well un-
derstood, such as stars. The goal of the present work is to study, without entering into
the astrophysical details, how the density profile of a spherical object would be qualitatively
modified by a gravitational force of the form (1.1).

For simplicity, we will assume the equation of state to be polytropic. In standard
gravity, the density profile for polytropic equations of state is determined by solutions of the
so-called Lane-Emden equation [15]. With the new gravitational interaction given in (1.1),
we obtain a modified Lane-Emden equation, which can be solved numerically. We also show
that, independently of the equation of state for matter, there is a universal upper bound on
the value of ϵ in order to obtain physically sensible solutions.

This paper is organized as follows: In section 2, we derive the modified Lane-Emden
equation. We then show the existence of a critical value for ϵ. In the subsequent section, we
perform the numerical integration of the modified Lane-Emden equation. We also construct
an exact analytic solution for a specific value of the polytropic index. Section 4 is devoted
to our conclusions.

2 Density profile in modified gravity

2.1 Modified Lane-Emden equation

In this section, we consider a static, spherically symmetric distribution of matter as a simple
toy model for an astrophysical object such as a non-relativistic star. Although this model
is too simple to be directly confronted with observational data, it enables us to capture the
essential modifications of the stellar structure and to provide simple estimates of the novel
effects due to the breaking of the Vainshtein screening. For a static, spherically symmetric
non-relativistic source, the hydrostatic equation reads

dP

dr
= −ρ

dΦ

dr
= −GNρ

(
M

r2
− ϵ

d2M

dr2

)
, (2.1)

– 2 –

Modifications inside matter: 
violation of  Vainshtein screening 

Kobayashi, Watanabe, Yamauchi 14

Deffayet, Pujolas, Sawicki, Vikman 10 
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

This term changes the speed of GWs
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

�̇2
ij ⇢

One can modify a bit the solution, say 
changing DM abundance. Background for: �g00bkgd �Kbkgd ⇠ �H
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations
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The observation of GW170817 and its electromagnatic counterpart implies that gravitational waves travel
at the speed of light, with deviations smaller than a few parts in 10−15. We discuss the consequences of this
experimental result for models of dark energy and modified gravity characterized by a single scalar degree
of freedom. To avoid tuning, the speed of gravitational waves must be unaffected not only for our particular
cosmological solution, but also for nearby solutions obtained by slightly changing the matter abundance. For this
to happen the coefficients of various operators must satisfy precise relations that we discuss both in the language
of the Effective Field Theory of Dark Energy and in the covariant one, for Horndeski, beyond Horndeski and
degenerate higher-order theories. The simplification is dramatic: of the three functions describing quartic and
quintic beyond Horndeski theories, only one remains and reduces to a standard conformal coupling to the Ricci
scalar for Horndeski theories. We show that the deduced relations among operators do not introduce further
tuning of the models, since they are stable under quantum corrections.

Introduction. The association of GW170817 [1] and GRB
170817A [2] events allowed to make an extraordinarily pre-
cise measurement of the speed of gravitational waves (GWs):
it is compatible with the speed of light with deviations smaller
than a few parts in 10−15 [3]. This measurement dramat-
ically improves our understanding of dark energy/modified
gravity. These scenarios are characterised by a cosmologi-
cal “medium” which interacts gravitationally with the rest of
matter. This medium, at variance with a simple cosmologi-
cal constant, spontaneously breaks Lorentz invariance, so that
there is no a priori reason to expect that gravitational waves,
which are an excitation of this medium, travel at the same
speed as photons [4].

The measurement is of particular relevance since it probes
the speed of GWs over cosmological distances. The change of
speed might be locally reduced in high density environments,
but it is difficult to believe that this screening effect can per-
sist over distances of order 40 Mpc. Moreover one has to
stress that this is a low energy measurement, at a scale as low
as 10 000 km. For such a low energy, one should be allowed
to use the Effective Field Theory (EFT) of Dark Energy or
Modified Gravity which applies to cosmological scales. Ac-
tually, in the theories we are going to study, the cutoff may
be of the same order as the measured GW momentum and
high-dimension operators may play some role; however one
does not expect that high-energy corrections conspire to com-
pletely cancel the modification of the GW speed. On the other
hand, previous stringent limits from gravitational Cherenkov
radiation of cosmic rays [5] are only applicable to high en-
ergy GWs, well outside the regime of validity of the EFTs de-
scribing Dark Energy and Modified Gravity. Moreover these
bounds only apply to GWs travelling faster, and not slower,
than light. For other limits see [6–8].

With these caveats in mind, in this paper we want to ex-
plore what are the consequences of this measurement in the
context of the Effective Field Theory (EFT) of Dark Energy
[9–11] and in its covariant counterpart, the Horndeski [12, 13]
and the beyond Horndeski theories [14] (see also [15]). If we
impose that the absence of an effect is robust under tiny vari-
ations of the cosmological history—say a small variation of

the dark matter abundance—we find that one needs precise
relations among the various coefficients of the operators. This
allows us to derive the most general scalar-tensor theory com-
patible with GWs travelling at the speed of light. Since the
required relations must be satisfied with great accuracy, given
the experimental precision, one needs to understand whether
they are radiatively stable. We will see that they are stable un-
der quantum corrections due to the non-renormalization prop-
erties of these theories.

Consequences for the EFT of Dark Energy. The EFT of
Dark Energy is a convenient way to parametrize cosmological
perturbations around a FRW solution. For the time being we
assume that matter is minimally coupled to the gravitational
metric; we will come back to this point later on. Expanded
around a FRW background, ds2 = −dt2 + a2(t)dx⃗2, the EFT
action reads

S =
∫

d4x
√
−g

[

M2
∗

2
f (4)R−Λ− cg00+

m4
2

2
(δg00)2

−
m3

3

2
δKδg00 −m2

4δK2 +
m̃2

4

2
δg00R−

m2
5

2
δg00δK2

−
m6

3
δK3 − m̃6δg00δG2 −

m7

3
δg00δK3

]

.

(1)

Here (4)R is the 4d Ricci scalar, δg00 = 1+ g00, δKν
µ ≡ Kν

µ −
Hδ ν

µ is the perturbation of the extrinsic curvature of the time

hypersurfaces (H ≡ ȧ/a), Rν
µ is the 3d Ricci tensor of these

hypersurfaces, and δK and R are respectively their trace. For
convenience we have also defined

δK2 ≡ δK2 − δKν
µ δK

µ
ν , δG2 ≡ δKν

µ R
µ
ν − δKR/2 ,

δK3 ≡ δK3 − 3δKδKν
µ δK

µ
ν + 2δKν

µ δK
µ
ρ δK

ρ
ν .

(2)

While M2
∗ is constant, the other parameters are time-

dependent functions. As we will discuss in the following
section, this action describes the cosmological perturbations

�̇2
ij ⇢

=



Covariant theory

2

in Horndeski (for m̃2
4 = m2

4 and m̃6 = m6) and beyond Horn-
deski theories. At quadratic order, it has been introduced in
[16]. At higher order, we have written only the operators that
contribute to the leading number of spatial derivatives. These
dominate the nonlinear regime of structure formation and the
Vainshtein regime (see e.g. [17, 18] and [19] for details). At
quintic or higher order there are no such operators. The other
operators present in Horndeski and beyond Horndeski theories
are not explicitly written but will be discussed below. More
general higher-order operators will be considered below.

In eq. (1), GWs only enter in the 4d and 3d Ricci tensor and
in the trace-free part of Kν

µ . At quadratic order, the operator

m2
4δK2 contributes to the graviton kinetic energy, changing

the normalization of the effective Planck mass—which be-
comes M2 ≡ M2

∗ f + 2m2
4—modifying the propagation speed

of gravitational waves [16, 20],

c2
T − 1 =−2m2

4/M2 . (3)

(Notice that m2
4 can have either signs, it is written as a square

just to keep track of dimensions.) Thus, the constraint of
GW170817 implies that the coefficient of the operator m2

4δK2

must be extremely small,

m2
4 = 0 . (4)

However, the value of this parameter depends on the partic-
ular background the EFT is expanded around. In particular, by
changing by a tiny amount the Hubble expansion or the back-
ground energy density of the scalar (or, correspondingly, the
dark matter abundance) the coefficients of the EFT action get
reshuffled. A change in the background appears in the EFT
action as a background value for δg00 and δK. To robustly
set to zero m2

4 we should set to zero also all those operators
that can generate it by a small change of the background so-
lution. As an example, consider m2

5δg00δK2. When δg00 is
evaluated on the background, this operator becomes quadratic
and shifts the parameter m2

4, i.e., δm2
4 = m2

5δg00
bkgd/2. How-

ever, the change in c2
T can be compensated by the operator

m̃2
4δg00R if m̃2

4 is chosen appropriately. By choosing

m̃2
4 = m2

5 (= 0 in Horndeski) , (5)

these two operators combine to change the overall normal-
ization of the graviton action, keeping the graviton on the
light-cone. (In Horndeski: m4 = m̃4 = 0.) The same tuning
must hold for operators with more powers of δg00 that have
not been explicitly included in the action, such as (δg00)2R,
(δg00)2δK2, etc.

Let us consider the remaining operators, starting with
m6δK3. When one of the δKν

µ or δK in the cubic expres-

sion for δK3 is evaluated on the background, this operator
becomes quadratic and contributes to m2

4. Using (δKν
µ )bkgd =

δHbkgdδ ν
µ one finds δm2

4 = δHbkgdm6. Notice that the depen-

dence on the background is through δHbkgd and not through

δg00
bkgd, so that its contribution cannot be compensated by nei-

ther m̃2
4 nor m2

5. It is easy to get convinced that the same hap-

pens for m̃6 and m7. When δg00 is evaluated on the back-
ground, upon use of eq. (8) of [16] one finds that the operator

m̃6 shifts m2
4 by δm2

4 = − 1
2(m̃6δg00

bkgd)
·. Finally, the operator

m7 induces δm2
4 = m7δg00

bkgdδHbkgd. Since the background

enters differently in all these operators, they must be precisely
set to zero,

m6 = m̃6 = m7 = 0 . (6)

As we will discuss below, the relations we found are stable
under radiative corrections.

Covariant action. Let us see how the constraints of
GW170817 on the EFT of Dark Energy translate for covariant
theories. In particular, we consider the action

S =
∫

d4x
√
−g∑

I

LI , (7)

where we have defined the Lagrangians

L2 ≡ G2(φ ,X) , L3 ≡ G3(φ ,X)!φ ,

L4 ≡ G4(φ ,X) (4)R− 2G4,X(φ ,X)(!φ2 −φ µνφµν)

+F4(φ ,X)εµνρ
σ εµ ′ν ′ρ ′σ φµφµ ′φνν ′φρρ ′ ,

L5 ≡ G5(φ ,X) (4)Gµνφ µν

+
1

3
G5,X(φ ,X)(!φ3 − 3!φ φµνφ µν + 2φµνφ µσ φν

σ )

+F5(φ ,X)εµνρσ εµ ′ν ′ρ ′σ ′
φµ φµ ′φνν ′φρρ ′φσσ ′ ,

(8)

that depend on a scalar field φ , X ≡ gµν∂µ φ∂ν φ and second
derivatives of the field. For convenience, we denote the scalar
field derivatives by φµ ≡ ∇µ φ , φµν ≡ ∇ν∇µ φ and !φ ≡ φ µ

µ .
The symbol εµνρσ is the totally antisymmetric Levi-Civita
tensor and a comma denotes a partial derivative with respect
to the argument. Horndeski theories are recovered by the con-
ditions F4(φ ,X) = 0 and F5(φ ,X) = 0, which guarantee that
the equations of motion are purely second order. If L5 = 0
(L4 = 0), it is possible to go beyond Horndeski by switching
on F4 ≠ 0 (F5 ≠ 0) without propagating more than one single
scalar and the graviton [14]. If both L4 and L5 are present, the
condition for the beyond Horndeski theories to be degenerate
[21] and propagate a single degree of freedom is

XG5,X F4 = 3F5

[

G4 − 2XG4,X − (X/2)G5,φ
]

, (9)

which can be obtained by imposing that both Lagrangians are
generated by the same disformal transformation [22]. In sum-
mary, the quartic and quintic Lagrangians of beyond Horn-
deski theories are described in terms of three independent
functions of φ and X

To compare with the EFT approach, let us write the relevant
parameters in eq. (1) in terms of the covariant functions G4,

2

in Horndeski (for m̃2
4 = m2

4 and m̃6 = m6) and beyond Horn-
deski theories. At quadratic order, it has been introduced in
[16]. At higher order, we have written only the operators that
contribute to the leading number of spatial derivatives. These
dominate the nonlinear regime of structure formation and the
Vainshtein regime (see e.g. [17, 18] and [19] for details). At
quintic or higher order there are no such operators. The other
operators present in Horndeski and beyond Horndeski theories
are not explicitly written but will be discussed below. More
general higher-order operators will be considered below.

In eq. (1), GWs only enter in the 4d and 3d Ricci tensor and
in the trace-free part of Kν

µ . At quadratic order, the operator

m2
4δK2 contributes to the graviton kinetic energy, changing

the normalization of the effective Planck mass—which be-
comes M2 ≡ M2

∗ f + 2m2
4—modifying the propagation speed

of gravitational waves [16, 20],

c2
T − 1 =−2m2

4/M2 . (3)

(Notice that m2
4 can have either signs, it is written as a square

just to keep track of dimensions.) Thus, the constraint of
GW170817 implies that the coefficient of the operator m2

4δK2

must be extremely small,

m2
4 = 0 . (4)

However, the value of this parameter depends on the partic-
ular background the EFT is expanded around. In particular, by
changing by a tiny amount the Hubble expansion or the back-
ground energy density of the scalar (or, correspondingly, the
dark matter abundance) the coefficients of the EFT action get
reshuffled. A change in the background appears in the EFT
action as a background value for δg00 and δK. To robustly
set to zero m2

4 we should set to zero also all those operators
that can generate it by a small change of the background so-
lution. As an example, consider m2

5δg00δK2. When δg00 is
evaluated on the background, this operator becomes quadratic
and shifts the parameter m2

4, i.e., δm2
4 = m2

5δg00
bkgd/2. How-

ever, the change in c2
T can be compensated by the operator

m̃2
4δg00R if m̃2

4 is chosen appropriately. By choosing

m̃2
4 = m2

5 (= 0 in Horndeski) , (5)

these two operators combine to change the overall normal-
ization of the graviton action, keeping the graviton on the
light-cone. (In Horndeski: m4 = m̃4 = 0.) The same tuning
must hold for operators with more powers of δg00 that have
not been explicitly included in the action, such as (δg00)2R,
(δg00)2δK2, etc.

Let us consider the remaining operators, starting with
m6δK3. When one of the δKν

µ or δK in the cubic expres-

sion for δK3 is evaluated on the background, this operator
becomes quadratic and contributes to m2

4. Using (δKν
µ )bkgd =

δHbkgdδ ν
µ one finds δm2

4 = δHbkgdm6. Notice that the depen-

dence on the background is through δHbkgd and not through

δg00
bkgd, so that its contribution cannot be compensated by nei-

ther m̃2
4 nor m2

5. It is easy to get convinced that the same hap-

pens for m̃6 and m7. When δg00 is evaluated on the back-
ground, upon use of eq. (8) of [16] one finds that the operator

m̃6 shifts m2
4 by δm2

4 = − 1
2(m̃6δg00

bkgd)
·. Finally, the operator

m7 induces δm2
4 = m7δg00

bkgdδHbkgd. Since the background

enters differently in all these operators, they must be precisely
set to zero,

m6 = m̃6 = m7 = 0 . (6)

As we will discuss below, the relations we found are stable
under radiative corrections.

Covariant action. Let us see how the constraints of
GW170817 on the EFT of Dark Energy translate for covariant
theories. In particular, we consider the action

S =
∫

d4x
√
−g∑

I

LI , (7)

where we have defined the Lagrangians

L2 ≡ G2(φ ,X) , L3 ≡ G3(φ ,X)!φ ,

L4 ≡ G4(φ ,X) (4)R− 2G4,X(φ ,X)(!φ2 −φ µνφµν)

+F4(φ ,X)εµνρ
σ εµ ′ν ′ρ ′σ φµφµ ′φνν ′φρρ ′ ,

L5 ≡ G5(φ ,X) (4)Gµνφ µν

+
1

3
G5,X(φ ,X)(!φ3 − 3!φ φµνφ µν + 2φµνφ µσ φν

σ )

+F5(φ ,X)εµνρσ εµ ′ν ′ρ ′σ ′
φµ φµ ′φνν ′φρρ ′φσσ ′ ,

(8)

that depend on a scalar field φ , X ≡ gµν∂µ φ∂ν φ and second
derivatives of the field. For convenience, we denote the scalar
field derivatives by φµ ≡ ∇µ φ , φµν ≡ ∇ν∇µ φ and !φ ≡ φ µ

µ .
The symbol εµνρσ is the totally antisymmetric Levi-Civita
tensor and a comma denotes a partial derivative with respect
to the argument. Horndeski theories are recovered by the con-
ditions F4(φ ,X) = 0 and F5(φ ,X) = 0, which guarantee that
the equations of motion are purely second order. If L5 = 0
(L4 = 0), it is possible to go beyond Horndeski by switching
on F4 ≠ 0 (F5 ≠ 0) without propagating more than one single
scalar and the graviton [14]. If both L4 and L5 are present, the
condition for the beyond Horndeski theories to be degenerate
[21] and propagate a single degree of freedom is

XG5,X F4 = 3F5

[

G4 − 2XG4,X − (X/2)G5,φ
]

, (9)

which can be obtained by imposing that both Lagrangians are
generated by the same disformal transformation [22]. In sum-
mary, the quartic and quintic Lagrangians of beyond Horn-
deski theories are described in terms of three independent
functions of φ and X

To compare with the EFT approach, let us write the relevant
parameters in eq. (1) in terms of the covariant functions G4,
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deski theories are described in terms of three independent
functions of φ and X

To compare with the EFT approach, let us write the relevant
parameters in eq. (1) in terms of the covariant functions G4,
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G5, F4 and F5 above (of course L2 and L3 do not affect GWs),

M2 = 2G4 − 4XG4,X −X
(

G5,φ + 2Hφ̇G5,X
)

+ 2X2F4 − 6Hφ̇X2F5 ,

m2
4 = m̃2

4 +X2F4 − 3Hφ̇X2F5 ,

m̃2
4 =−

[

2XG4,X +XG5,φ +
(

Hφ̇ − φ̈
)

XG5,X
]
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m2
5 = X

[

2G4,X + 4XG4,XX +Hφ̇(3G5,X + 2XG5,XX)+G5,φ

+XG5,Xφ − 4XF4− 2X2F4,X +Hφ̇X
(

15F5 + 6XF5,X
)]

,

m6 = m̃6 − 3φ̇X2F5 , m̃6 =−φ̇XG5,X ,

m7 =
1

2
φ̇X

(

3G5,X + 2XG5,XX + 15XF5+ 6X2F5,X
)

.

(10)

Setting the speed of GWs to one, i.e., eq. (4), implies that
the particular combination appearing in the expression of m2

4
above vanishes. This must be true on any background and thus
must hold for any value of φ̈ , H and φ̇ (or X). This implies,
respectively,

G5,X = 0 , F5 = 0 , 2G4,X −XF4+G5,φ = 0 , (11)

for any X and φ . Thus, G5 can be at most a function of φ , the
beyond Horndeski term F5 must be absent and there is a rela-
tion between G4,X and F4 and their derivatives. The first two
conditions automatically imply eq. (6). It is also straightfor-
ward to verify that eq. (5) is a consequence of eq. (11). Finally,
using eq. (11) in L4 and L5 of the Lagrangians (8), after some
manipulations and integrations by parts we remain with

LcT =1 = G2(φ ,X)+G3(φ ,X)!φ +B4(φ ,X) (4)R

−
4

X
B4,X(φ ,X)(φ µ φν φµν!φ −φ µφµνφλ φλ ν) ,

(12)

where we have defined B4 ≡ G4 +XG5,φ/2. To show that this
theory does not change the speed of tensors we can decom-
pose the 4d Ricci using the Gauss-Codazzi relation and after
some integration by parts one finds

LcT=1 = G2 +G3!φ +B4(R+Kν
µK

µ
ν −K2) , (13)

where Kν
µ , K and R are respectively the extrinsic curvature

tensor, its trace and the 3d Ricci scalar of the uniform φ hy-
persurfaces. Note that from eq. (11) 2B4,X = XF4. Thus, in
the absence of a beyond Horndeski operator, F4 = 0, the sec-
ond term in this equation vanishes and B4 is only a function
of φ so that we recover a standard conformal coupling to the
4d Ricci scalar, i.e., B4(φ) (4)R.

So far, we have assumed that cT = 1 is robust under in-
dependent variations of H, φ̇ and φ̈ : indeed both the expan-
sion history and φ(t) change if one modifies, for instance,
the dark matter abundance. This however does not happen
in the particular cases when dark energy has a fixed φ̇ in-
dependently of H. In the EFT language one can check that
the change in g00 induced by a change δHbkgd is of order

c/(c+ 2m4
2) · δHbkgd/H. If c = 0 (and therefore Λ in eq. (1)

is time-independent) the variation of the cosmological history
does not give rise to a change in φ̇ . Notice that dark energy

acts like a cosmological constant at background level. In this
case, the condition m2

4 = 0 does not automatically require that
G5,X and F5 vanish independently but it only requires that they
are related by G5,X + 3XF5 = 0, and only on the attractor so-
lution. However, this condition together with the degeneracy
equation (9) and m2

4 = 0 imply the pathological value M = 0,
unless G5,X and F5 separately vanish. In the EFT language

one still has m6 = m̃6 = 0, but in general m̃2
4 ≠ m2

5 and also m7

is independent.

Radiative stability. We saw that the observation of
GW170817 imposes, both in the EFT description and in the
covariant one, some precise relations among the coefficients
of various operators. Of course it is crucial to understand
whether these relations are stable under quantum corrections,
otherwise one would have to rely, order by order in perturba-
tion theory, on a 10−15 tuning. Let us discuss this issue in the
covariant theory. As discussed in [23], the Horndeski theo-
ries inherit some of the non-renormalization properties of the
Galileons [24] and this strongly constraints the size of quan-
tum corrections. Let us assume the functions G4 and G5 do
not depend on φ and are of the form

G4(X) =
Λ8

2

Λ6
3

Ĝ4

(

X

Λ4
2

)

, G5(X) =
Λ8

2

Λ9
3

Ĝ5

(

X

Λ4
2

)

. (14)

To have sizeable dark energy effects one takes Λ2 ∼
(MPlH0)1/2 and Λ3 ∼ (MPlH

2
0 )

1/3, where MPl is the Planck

mass. We take the dimensionless functions Ĝ to be polynomi-
als in their variable with order one coefficients cn. The result
of [23] is that all these coefficients are corrected by a rela-
tive amount of order δcn ∼ (Λ3/Λ2)4 ∼ 10−40. This is much
smaller than the 10−15 cancellation implied by the measure-
ment of the speed of GWs: it is completely negligible un-
less one goes to extraordinary large n. The same conclusions
can be obtained in a beyond Horndeski theory [25]. In con-
clusions the relation one has to invoke to be compatible with
GW170817 are technically natural in the sense that once im-
posed at tree level they are stable under quantum corrections.

Higher-Order Operators and Conformal Transformations.
It was recently pointed out that there are more general theories
than those in eq. (8) that do not propagate additional degrees
of freedom [21]. In the EFT language they give rise to partic-
ular combinations of the quadratic operators [26]
∫

d4x
√
−g

M2

2

(

−
2

3
αLδK2 + 4β1δKV +β2V 2 +β3aia

i

)

,

(15)
where V ≡ − 1

2(ġ
00 −Ni∂ig

00)/g00 and ai = − 1
2 ∂ig

00/g00. It
is straightforward to see that these operators do not affect the
speed of GWs. This is true around the given background, but
also if one considers different backgrounds: since these oper-
ators have two derivatives, only δg00 can be turned on, but it
is easy to see that even around the new background GWs are
unaffected.

In the covariant language these theories can be obtained
starting from beyond Horndeski and performing a conformal
transformation that depends on X . Since this does not change
the light-cone, if one starts from the action (12) also the re-
sulting degenerate higher-order theories will not affect GWs
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unless G5,X and F5 separately vanish. In the EFT language
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is independent.

Radiative stability. We saw that the observation of
GW170817 imposes, both in the EFT description and in the
covariant one, some precise relations among the coefficients
of various operators. Of course it is crucial to understand
whether these relations are stable under quantum corrections,
otherwise one would have to rely, order by order in perturba-
tion theory, on a 10−15 tuning. Let us discuss this issue in the
covariant theory. As discussed in [23], the Horndeski theo-
ries inherit some of the non-renormalization properties of the
Galileons [24] and this strongly constraints the size of quan-
tum corrections. Let us assume the functions G4 and G5 do
not depend on φ and are of the form
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To have sizeable dark energy effects one takes Λ2 ∼
(MPlH0)1/2 and Λ3 ∼ (MPlH

2
0 )

1/3, where MPl is the Planck

mass. We take the dimensionless functions Ĝ to be polynomi-
als in their variable with order one coefficients cn. The result
of [23] is that all these coefficients are corrected by a rela-
tive amount of order δcn ∼ (Λ3/Λ2)4 ∼ 10−40. This is much
smaller than the 10−15 cancellation implied by the measure-
ment of the speed of GWs: it is completely negligible un-
less one goes to extraordinary large n. The same conclusions
can be obtained in a beyond Horndeski theory [25]. In con-
clusions the relation one has to invoke to be compatible with
GW170817 are technically natural in the sense that once im-
posed at tree level they are stable under quantum corrections.

Higher-Order Operators and Conformal Transformations.
It was recently pointed out that there are more general theories
than those in eq. (8) that do not propagate additional degrees
of freedom [21]. In the EFT language they give rise to partic-
ular combinations of the quadratic operators [26]
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is straightforward to see that these operators do not affect the
speed of GWs. This is true around the given background, but
also if one considers different backgrounds: since these oper-
ators have two derivatives, only δg00 can be turned on, but it
is easy to see that even around the new background GWs are
unaffected.

In the covariant language these theories can be obtained
starting from beyond Horndeski and performing a conformal
transformation that depends on X . Since this does not change
the light-cone, if one starts from the action (12) also the re-
sulting degenerate higher-order theories will not affect GWs

3
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Setting the speed of GWs to one, i.e., eq. (4), implies that
the particular combination appearing in the expression of m2

4
above vanishes. This must be true on any background and thus
must hold for any value of φ̈ , H and φ̇ (or X). This implies,
respectively,

G5,X = 0 , F5 = 0 , 2G4,X −XF4+G5,φ = 0 , (11)

for any X and φ . Thus, G5 can be at most a function of φ , the
beyond Horndeski term F5 must be absent and there is a rela-
tion between G4,X and F4 and their derivatives. The first two
conditions automatically imply eq. (6). It is also straightfor-
ward to verify that eq. (5) is a consequence of eq. (11). Finally,
using eq. (11) in L4 and L5 of the Lagrangians (8), after some
manipulations and integrations by parts we remain with
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where we have defined B4 ≡ G4 +XG5,φ/2. To show that this
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4d Ricci scalar, i.e., B4(φ) (4)R.
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dependent variations of H, φ̇ and φ̈ : indeed both the expan-
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1 Introduction and summary

Over the years, the e↵ective field theory (EFT) approach has proven itself invaluable for or-
ganizing physics at di↵erent length scales. With the sole knowledge of the relevant physical
degrees of freedom and symmetries – exact or approximate – that govern their dynamics,
EFTs can be used to infer model-independent physical predictions. The reason for such uni-
versality lies in a fundamental property of the great majority of physical systems, according
to which the details of physics at short distances do not leave a qualitative impact on their
large-distance characteristics, enabling one to analyze theories with various UV structure in
a single framework.

In recent years, the EFT approach has o↵ered new insights in various cosmological
contexts, including – but not limited to – inflation [1, 2], dark energy [3, 4, 5] and the large-
scale structure [6]. For example, the e↵ective theory of inflation is based on the observation
that the dynamics of the most general theory of ‘single-clock’ inflation can be universally
captured by an EFT nonlinearly realizing time di↵eomorphisms (di↵s)1 t ! t+⇠

0(t,x) , with
spatial di↵s xi

! x
i+⇠

i(t,x) realized linearly. The energy scales of interest are those around
the inflationary Hubble rate, E ⇠ H, i.e. the frequency at which all correlation functions
are measured in the CMB. The spectrum of perturbations consists of the two polarizations
of the graviton plus the Goldstone boson of time translation symmetry breaking. That the
latter mode has to be present in the spectrum is a direct consequence of the symmetry
breaking pattern and has little to do with the exact UV details of the microscopic theory
of inflation. This Goldstone boson is what we usually refer to as the adiabatic mode. The
CMB indicates that precisely this mode is predominantly responsible for the generation of
large-scale structures in the universe. Indeed, any UV theory of inflation that does not lead
to extra degrees of freedom around the Hubble energies is equivalent to single-clock inflation
and is thus captured by the EFT of Refs. [1, 2].

Given that symmetries define the e↵ective theories, it is of interest to explore the
possible symmetries of systems consisting of one or more scalar fields coupled to gravity –
a typical setup for cosmological model-building. For example, in the context of inflation,
e↵ective theories with (approximate) shift symmetry play a key role. In this paper, we
study yet another possible – and, as we argue below, necessarily approximate – symmetry
of cosmological scalar fields: the invariance under internal galileon transformations

� ! �+ bµx
µ
. (1.1)

Theories invariant under (1.1) have appeared in various contexts before. To start with,
Eq. (1.1) is a symmetry (up to a total derivative) of the simplest possible quantum field
theory: that of a free scalar field. The simplest interacting generalization, nontrivially
invariant under (1.1), i.e. containing less than two derivatives per field in the Lagrangian,

1
In what follows, we will at times abuse the nomenclature by referring to this redundancy as ‘time

translations’.

•  Approximate Galilean invariance

•  Non renormalization of Galileons

•  Broken by gravity 

The particular coupling giving 2nd order EOM 
keeps approximate Galilean invariance 

2.1 Flat space galileons

Consider a trivial, free theory of a scalar �. As emphasized above, in addition to more
familiar symmetries (such as the ones under constant shifts or conformal transformations),
this theory possesses an extra invariance under internal galileon transformations (1.1). The
latter leaves the action invariant only up to a boundary term. As shown in [9], apart
from the free theory – and even a more trivial tadpole term, there are exactly three more
interaction terms in four spacetime dimensions that share invariance under internal galileon
transformations in a non-trivial way. The corresponding theory can be written as

L = (@�)2 +
5X

I=3

ca

⇤3(I�2)
3

Li , (2.1)

with the three interaction terms given by

L3 = (@�)2 [�] , (2.2)

L4 = (@�)2
�
[�]2 � [�2]

�
, (2.3)

L5 = (@�)2
�
[�]3 � 3[�][�2] + 2[�3]

�
, (2.4)

where we denote [�] ⌘ ⇤�, [�2] ⌘ @
µ
@⌫�@

⌫
@µ�, etc. In addition to being invariant under

(1.1), galileon theories share another special property: the associated scalar equations of
motion are second order, both in time and in space, despite the higher-derivative interactions
in Eqs. (2.2)–(2.4). This guarantees that there are no extra propagating degrees of freedom
hidden in �. Moreover, the particular structure of the Lagrangian (2.1) results in a non-
renormalization theorem that allows to radiatively generate only terms trivially invariant
under (1.1), i.e. terms with at least two derivatives acting on �. In particular, the coe�cients
cI of galileon interactions are not renormalized by quantum loops in the presence of exact
galileon invariance [7]. In theories of modified gravity with matter, galileons couple to the
rest of the degrees of freedom via symmetry-breaking Planck-suppressed operators2, usually
making the renormalization of cI parametrically weak.

2.2 Coupling to gravity

It is generally impossible to couple the galileon to gravity3, while keeping invariance under
galileon transformations, or their curved-space generalization, intact. Thus, galileon sym-
metry is expected to be broken even in the purely scalar sector – i.e. if one sets the metric
perturbation to zero ‘by hand’ – due to loop-generated operators not invariant under (1.1)
(these operators of course have to be suppressed by at least one power of the Planck mass).

2
In massive gravity, where � describes the helicity-0 polarization of the graviton, this simply follows from

the equivalence principle.
3
Unless gravity is massive, see [15].

4

where π̂ = π/M4m is the canonically normalized field. By these equations we expect
the terms that get strong at the scale Λ to have the form

∆Lbdy ∼ Λ4

(

∂

Λ

)n (
R(γ)

m2

)p (
K

m

)q

. (3.41)

Note that the theory becomes strongly coupled whenever the 4D curvature is of order
m2. We will comment further on this point in Section 4 below.

Note also that the cubic interaction Eq. (3.38) is nonlocal when written in terms

of geometrical quantities (since K ∼ ∂2π and R ∼ ∂2π). This means that loops of
π fields should not renormalize this interaction, and that the divergent part of loop

diagrams involving this interaction should be expressible as a function of ∂2π.5 This
non-renormalization theorem follows simply by integration by parts. Consider any
1PI diagram with an external line coming from one of the factors of π with only one

derivative. Because the diagram is 1PI, both of the other π factors attach to internal
lines. We then have

∂µπext∂µπint 4πint = ∂µπext∂ν

[

∂µπint∂νπint − 1
2ηµν∂

ρπint∂ρπint

]

, (3.42)

which is a function of ∂2πext after integration by parts. This gives a nice check of the
consistency of this framework.

4 Classical Instabilities

In this section we study a classical solution to the DGP model in which the stress-

energy tensor on the brane satisfies the dominant energy condition, yet the brane has
negative energy from the 5D point of view. When the boundary has the topology of
R4 it is difficult to define the 5D energy, which is presumably infinite. We therefore

look for static solution where the spatial sections of the boundary have topology S3,
the bulk is ‘outside’ the S3, and the solution is O(4) symmetric. The geometry of the

boundary therefore corresponds to a spatially compact static cosmological solution,
similar to the Einstein universe.

By Birkhoff’s theorem, the metric outside the boundary is the 5D Schwarzschild

metric

ds2 = −f 2(r)dt2 +
dr2

f 2(r)
+ r2dΩ2

3, f =

√

1 −
R2

S

r2
(4.1)

5A full calculation should include loops of bulk fields as well. However, the scaling argument
shows the leading interactions at the scale Λ are expressible in terms of the interactions of the π

field.
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Figure 2: Single-graviton vertices, which can contribute two or three external scalars with one

derivative ((@�)
2
or (@�)

3
) to a 1PI vertex. The vertices from the second line exactly cancel for the

unique (non-minimal) curved-space extension of the galileon that retains second-order equations of

motion.

from h on the rest of the fields via partial integration however makes it evident that the
corresponding vertex can only have two solid lines, but not three. The case of quartic
and quintic galileons is more non-trivial, but straightforward; we show in Appendix A that
vertices with three solid lines and one graviton, as well as five solid lines and two gravitons
can be removed by suitably adding non-minimal couplings to gravity. The resultant theory
is the covariant galileon of Ref. [14] – characterized, as a bonus, by second-order equations
of motion both for the scalar and the metric.

In summary, the ‘most symmetric’ generalization of the galileon coupled to gravity
consists of the following operators

1

⇤3
3

L3 !
p
�g

1

⇤3
3

L
min
3 , (2.7)

1

⇤6
3

L4 !
p
�g

1

⇤6
3


(@�)4 R� 4 L

min
4

�
, (2.8)

1

⇤9
3

L5 !
p
�g

1

⇤9
3


(@�)4 G

µ⌫
rµr⌫�+

2

3
L

min
5

�
, (2.9)

where L
min
I

denote the galileons (2.2)–(2.4) minimally coupled to gravity. The structure of
the full e↵ective theory is such that every pair of external scalars with no more than one
derivative on each unavoidably comes with a suppression of at least one power of the Planck
scale. With this in mind, quantum-mechanically generated operators of the form (@�)2n can
be estimated simply on dimensional grounds to be at most of the following magnitude

(@�)2n

M
n

Pl⇤
3n�4
3

. (2.10)
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Radiative stability

The scales (Mn

Pl⇤
3n�4
3 )1/(4n�4) suppressing such operators approach ⇤2 only for asymptotically

large n, otherwise being parametrically larger.

In the following sections, we will argue that the statement of approximate galileon
invariance can be viewed as a statement about non-trivial classical vacua, generically present
in the shift-invariant theories at hand. If these vacua are to be insensitive to UV physics,
the symmetry-breaking operators in the e↵ective theory can be at most of order (2.10) in
magnitude. In such cases we will say that the galileon invariance is broken only weakly by
couplings to gravity.

3 Theories with WBG invariance

Perhaps, the most important lesson that one can draw from the discussion of the previous
section is that the covariant galileon is in fact not the most general theory enjoying the above-
described quantum properties. Consider the e↵ective theory with the leading operators given
by the following subclass of the Horndeski terms

L
WBG
2 = ⇤4

2 G2(X) , (3.1)

L
WBG
3 =

⇤4
2

⇤3
3

G3(X)[�] , (3.2)

L
WBG
4 =

⇤8
2

⇤6
3

G4(X)R + 2
⇤4

2

⇤6
3

G4X(X)
�
[�]2 � [�2]

�
, (3.3)

L
WBG
5 =

⇤8
2

⇤9
3

G5(X)Gµ⌫�
µ⌫

�
⇤4

2

3⇤9
3

G5X(X)
�
[�]3 � 3[�][�2] + 2[�3]

�
, (3.4)

where we now extend the notation employed in Eqs. (2.2)–(2.4) by replacing the partial
derivatives with covariant ones, i.e. [�] ⌘ g

µ⌫
rµr⌫�, [�2] ⌘ r

µ
r⌫�r

⌫
rµ�, etc. Moreover,

GI are arbitrary dimensionless functions of the dimensionless variable

X ⌘ �
1

⇤4
2

g
µ⌫
@µ�@⌫� , (3.5)

and the subscript ‘X’ means di↵erentiation with respect to this variable8. We will then
assume that the functions GI are defined through the Taylor expansion

GI = c
(0)
I

� c
(1)
I
X + c

(2)
I
X

2 + · · · = c
(0)
I

+ c
(1)
I

(@�)2

⇤4
2

+ c
(2)
I

(@�)4

⇤8
2

+ . . . , (3.6)

8
The particular form of the interactions (3.1)–(3.4) (the relative coe�cients between two operators in

L
WBG
4 or L

WBG
5 , for example) may appear tuned, and this is sometimes presented as an unfortunate feature

in the literature. We stress that this ‘tuning’, motivated by restoring unitarity in the theory, is in fact natural

and stable under quantum corrections. This is very similar to why we work with a gauge-invariant kinetic

term �Tr F
µ⌫
Fµ⌫ in theories with massive spin-1 particles, despite of there being no gauge invariance in the

presence of the mass term.

8

⇤2 ⇠ (MPH0)
1/2

⇤3 ⇠ (MPH
2
0 )

1/3

3

G5, F4 and F5 above (of course L2 and L3 do not affect GWs),

M2 = 2G4 − 4XG4,X −X
(

G5,φ + 2Hφ̇G5,X
)

+ 2X2F4 − 6Hφ̇X2F5 ,

m2
4 = m̃2

4 +X2F4 − 3Hφ̇X2F5 ,

m̃2
4 =−

[

2XG4,X +XG5,φ +
(

Hφ̇ − φ̈
)

XG5,X
]

,

m2
5 = X

[

2G4,X + 4XG4,XX +Hφ̇(3G5,X + 2XG5,XX)+G5,φ

+XG5,Xφ − 4XF4− 2X2F4,X +Hφ̇X
(

15F5 + 6XF5,X
)]

,

m6 = m̃6 − 3φ̇X2F5 , m̃6 =−φ̇XG5,X ,

m7 =
1

2
φ̇X

(

3G5,X + 2XG5,XX + 15XF5+ 6X2F5,X
)

.

(10)

Setting the speed of GWs to one, i.e., eq. (4), implies that
the particular combination appearing in the expression of m2

4
above vanishes. This must be true on any background and thus
must hold for any value of φ̈ , H and φ̇ (or X). This implies,
respectively,

G5,X = 0 , F5 = 0 , 2G4,X −XF4+G5,φ = 0 , (11)

for any X and φ . Thus, G5 can be at most a function of φ , the
beyond Horndeski term F5 must be absent and there is a rela-
tion between G4,X and F4 and their derivatives. The first two
conditions automatically imply eq. (6). It is also straightfor-
ward to verify that eq. (5) is a consequence of eq. (11). Finally,
using eq. (11) in L4 and L5 of the Lagrangians (8), after some
manipulations and integrations by parts we remain with

LcT =1 = G2(φ ,X)+G3(φ ,X)!φ +B4(φ ,X) (4)R

−
4

X
B4,X(φ ,X)(φ µ φν φµν!φ −φ µφµνφλ φλ ν) ,

(12)

where we have defined B4 ≡ G4 +XG5,φ/2. To show that this
theory does not change the speed of tensors we can decom-
pose the 4d Ricci using the Gauss-Codazzi relation and after
some integration by parts one finds

LcT=1 = G2 +G3!φ +B4(R+Kν
µK

µ
ν −K2) , (13)

where Kν
µ , K and R are respectively the extrinsic curvature

tensor, its trace and the 3d Ricci scalar of the uniform φ hy-
persurfaces. Note that from eq. (11) 2B4,X = XF4. Thus, in
the absence of a beyond Horndeski operator, F4 = 0, the sec-
ond term in this equation vanishes and B4 is only a function
of φ so that we recover a standard conformal coupling to the
4d Ricci scalar, i.e., B4(φ) (4)R.

So far, we have assumed that cT = 1 is robust under in-
dependent variations of H, φ̇ and φ̈ : indeed both the expan-
sion history and φ(t) change if one modifies, for instance,
the dark matter abundance. This however does not happen
in the particular cases when dark energy has a fixed φ̇ in-
dependently of H. In the EFT language one can check that
the change in g00 induced by a change δHbkgd is of order

c/(c+ 2m4
2) · δHbkgd/H. If c = 0 (and therefore Λ in eq. (1)

is time-independent) the variation of the cosmological history
does not give rise to a change in φ̇ . Notice that dark energy

acts like a cosmological constant at background level. In this
case, the condition m2

4 = 0 does not automatically require that
G5,X and F5 vanish independently but it only requires that they
are related by G5,X + 3XF5 = 0, and only on the attractor so-
lution. However, this condition together with the degeneracy
equation (9) and m2

4 = 0 imply the pathological value M = 0,
unless G5,X and F5 separately vanish. In the EFT language

one still has m6 = m̃6 = 0, but in general m̃2
4 ≠ m2

5 and also m7

is independent.

Radiative stability. We saw that the observation of
GW170817 imposes, both in the EFT description and in the
covariant one, some precise relations among the coefficients
of various operators. Of course it is crucial to understand
whether these relations are stable under quantum corrections,
otherwise one would have to rely, order by order in perturba-
tion theory, on a 10−15 tuning. Let us discuss this issue in the
covariant theory. As discussed in [23], the Horndeski theo-
ries inherit some of the non-renormalization properties of the
Galileons [24] and this strongly constraints the size of quan-
tum corrections. Let us assume the functions G4 and G5 do
not depend on φ and are of the form

G4(X) =
Λ8

2

Λ6
3

Ĝ4

(

X

Λ4
2

)

, G5(X) =
Λ8

2

Λ9
3

Ĝ5

(

X

Λ4
2

)

. (14)

To have sizeable dark energy effects one takes Λ2 ∼
(MPlH0)1/2 and Λ3 ∼ (MPlH

2
0 )

1/3, where MPl is the Planck

mass. We take the dimensionless functions Ĝ to be polynomi-
als in their variable with order one coefficients cn. The result
of [23] is that all these coefficients are corrected by a rela-
tive amount of order δcn ∼ (Λ3/Λ2)4 ∼ 10−40. This is much
smaller than the 10−15 cancellation implied by the measure-
ment of the speed of GWs: it is completely negligible un-
less one goes to extraordinary large n. The same conclusions
can be obtained in a beyond Horndeski theory [25]. In con-
clusions the relation one has to invoke to be compatible with
GW170817 are technically natural in the sense that once im-
posed at tree level they are stable under quantum corrections.

Higher-Order Operators and Conformal Transformations.
It was recently pointed out that there are more general theories
than those in eq. (8) that do not propagate additional degrees
of freedom [21]. In the EFT language they give rise to partic-
ular combinations of the quadratic operators [26]
∫

d4x
√
−g

M2

2

(

−
2

3
αLδK2 + 4β1δKV +β2V 2 +β3aia

i

)

,

(15)
where V ≡ − 1

2(ġ
00 −Ni∂ig

00)/g00 and ai = − 1
2 ∂ig

00/g00. It
is straightforward to see that these operators do not affect the
speed of GWs. This is true around the given background, but
also if one considers different backgrounds: since these oper-
ators have two derivatives, only δg00 can be turned on, but it
is easy to see that even around the new background GWs are
unaffected.

In the covariant language these theories can be obtained
starting from beyond Horndeski and performing a conformal
transformation that depends on X . Since this does not change
the light-cone, if one starts from the action (12) also the re-
sulting degenerate higher-order theories will not affect GWs

Same holds for Beyond Horndeski theories

⌧ 10�15

The tuning is stable



Graviton decay into dark energy

The (spontaneous) breaking of Lorentz 
invariance allows graviton decay
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Solving constraints:

Non-relativistic kinematic:

      very constrained: irrelevant for LSS observations
(unless cs=1 with great precision)

Effect of large γ occupation number in progress (cs >1?) 
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Conclusions

•  Measurement speed of GWs: dramatic cut in the available DE models

•  Future: even more cosmological distances and lower energy

•  Further constraints from graviton decay

•  Compare with what future LSS mission will do...

⇤
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Beyond Beyond Horndeski: DHOST

3

G5, F4 and F5 above (of course L2 and L3 do not affect GWs),

M2 = 2G4 − 4XG4,X −X
(

G5,φ + 2Hφ̇G5,X
)

+ 2X2F4 − 6Hφ̇X2F5 ,

m2
4 = m̃2

4 +X2F4 − 3Hφ̇X2F5 ,

m̃2
4 =−

[

2XG4,X +XG5,φ +
(

Hφ̇ − φ̈
)

XG5,X
]

,

m2
5 = X

[

2G4,X + 4XG4,XX +Hφ̇(3G5,X + 2XG5,XX)+G5,φ

+XG5,Xφ − 4XF4− 2X2F4,X +Hφ̇X
(

15F5 + 6XF5,X
)]

,

m6 = m̃6 − 3φ̇X2F5 , m̃6 =−φ̇XG5,X ,

m7 =
1

2
φ̇X

(

3G5,X + 2XG5,XX + 15XF5+ 6X2F5,X
)

.

(10)

Setting the speed of GWs to one, i.e., eq. (4), implies that
the particular combination appearing in the expression of m2

4
above vanishes. This must be true on any background and thus
must hold for any value of φ̈ , H and φ̇ (or X). This implies,
respectively,

G5,X = 0 , F5 = 0 , 2G4,X −XF4+G5,φ = 0 , (11)

for any X and φ . Thus, G5 can be at most a function of φ , the
beyond Horndeski term F5 must be absent and there is a rela-
tion between G4,X and F4 and their derivatives. The first two
conditions automatically imply eq. (6). It is also straightfor-
ward to verify that eq. (5) is a consequence of eq. (11). Finally,
using eq. (11) in L4 and L5 of the Lagrangians (8), after some
manipulations and integrations by parts we remain with

LcT =1 = B2(φ ,X)+B3(φ ,X)!φ +B4(φ ,X) (4)R

−
4

X
B4,X(φ ,X)(φ µ φν φµν!φ −φ µφµν φλ φλ ν) ,

(12)

where B2 and B3 are new generic functions and we have de-
fined B4 ≡ G4 +XG5,φ/2. To show that this theory does not
change the speed of the tensors we can decompose the 4d
Ricci using the Gauss-Codazzi relation and after some inte-
gration by parts one finds

LcT=1 = B2 +B3!φ +B4(R+Kν
µK

µ
ν −K2) , (13)

where Kν
µ , K and R are respectively the extrinsic curvature

tensor, its trace and the 3d Ricci scalar of the uniform φ hy-
persurfaces. Note that from eq. (11) 2B4,X = XF4. Thus, in
the absence of a beyond Horndeski operator, F4 = 0, the sec-
ond term in this equation vanishes and B4 is only a function
of φ so that we recover a standard conformal coupling to the
4d Ricci scalar, i.e., B4(φ) (4)R.

So far, we have assumed that cT = 1 is robust under inde-
pendent variations of H, φ̇ and φ̈ : indeed both the expansion
history and φ(t) change if one modifies, for instance, the dark
matter abundance. This however does not happen in the par-
ticular cases when dark energy has a fixed φ̇ independent of H.
In the EFT language one can check that the change in g00 in-
duced by a change δHbkgd is of order c/(c+2m4

2) ·δHbkgd/H.
If c = 0 (and therefore Λ in eq. (1) is time-independent) the
variation of the cosmological history does not give rise to a

change in φ̇ . Notice that dark energy acts like a cosmologi-
cal constant at background level. In this case, the condition
m2

4 = 0 does not automatically require that G5,X and F5 van-
ish independently but it only requires that they are related by
G5,X + 3XF5 = 0, and only on the attractor solution. How-
ever, this condition together with the degeneracy equation (9)
and m2

4 = 0 imply the pathological value M = 0, unless G5,X

and F5 separately vanish. In the EFT language one still has
m6 = m̃6 = 0, but in general m̃2

4 ≠ m2
5 and also m7 is indepen-

dent.

Radiative stability.— We saw that the observation of
GW170817 imposes, both in the EFT description and in the
covariant one, some precise relations among the coefficients
of various operators. Of course it is crucial to understand
whether these relations are stable under quantum corrections,
otherwise one would have to rely, order by order in pertur-
bation theory, on a 10−15 tuning. Let us discuss this issue
in the covariant theory. As discussed in [26], the Horndeski
theories inherit some of the properties of the Galileons [27],
for which the leading operators cannot be generated by loop
graphs. This strongly constrains the size of quantum correc-
tions in our case.

Let us assume the functions G4 and G5 do not depend on φ
and are of the form

G4(X) =
Λ8

2

Λ6
3

Ĝ4

(

X

Λ4
2

)

, G5(X) =
Λ8

2

Λ9
3

Ĝ5

(

X

Λ4
2

)

. (14)

To have sizeable dark energy effects one takes Λ2 ∼
(MPlH0)1/2 and Λ3 ∼ (MPlH

2
0 )

1/3, where MPl is the Planck

mass. We take the dimensionless functions Ĝ to be polynomi-
als in their variable with order one coefficients cn. The result
of [26] is that all these coefficients are corrected by a rela-
tive amount of order δcn ∼ (Λ3/Λ2)4 ∼ 10−40. This is much
smaller than the 10−15 cancellation implied by the measure-
ment of the speed of GWs: it is completely negligible unless
one goes to extraordinary large n. The same conclusions can
be obtained in a beyond Horndeski theory [28]. In conclu-
sions, the relations one has to invoke to be compatible with
GW170817 are technically natural in the sense that once im-
posed at tree level they are stable under quantum corrections.

Higher-Order Operators and Conformal Transformations.–
It was recently pointed out that there are more general theories
than those in eq. (8) that do not propagate additional degrees
of freedom [24]. In the EFT language they give rise to partic-
ular combinations of the quadratic operators [29]

∫

d4x
√
−g

M2

2

(

−
2

3
αLδK2 + 4β1δKV +β2V 2 +β3aia

i

)

,

(15)
where V ≡ − 1

2(ġ
00 −Ni∂ig

00)/g00 and ai = − 1
2 ∂ig

00/g00. It
is straightforward to see that these operators do not affect the
speed of GWs. This is true around the given background, but
also if one considers different backgrounds: since these oper-
ators have two derivatives, only δg00 can be turned on, but it
is easy to see that even around the new background GWs are
unaffected.

In the covariant language these theories can be obtained
starting from beyond Horndeski and performing a conformal

Even more general theories propagating a single dof

A combination of:

These do not affect GWs on any background

Can be obtained by:  

4

transformation that depends on X . Since this does not change
the light-cone, if one starts from the action (12) also the re-
sulting degenerate higher-order theories will not affect GWs’
speed of propagation. Under a general conformal transforma-
tion gµν →C(φ ,X)gµν [30, 31] we find (we assume C is not
linear in X)

LcT =1 = B̃2 + B̃3!φ +CB4
(4)R−

4CB4,X

X
φ µ φν φµν!φ

+

(

4CB4,X

X
+

6B4C,X
2

C
+ 8C,XB4,X

)

φ µ φµν φλ φλ ν

−
8C,X B4,X

X
(φµ φ µνφν )

2 .

(16)

(We do not explicitly show the expression of B̃2 and B̃3, since
they are anyway free functions unrelated to the other terms.)
This is the most general degenerate theory which can be ob-
tained from Horndeski by a metric redefinition compatible
with c2

T = 1. In the classification of Ref. [24] it belongs to
type Ia DHOST theories.

There are theories in which spatial (but not time) higher
derivatives are present and therefore do not propagate extra
degrees of freedom. In the case of the Ghost Condensate [32],
the modification of the GW speed goes as c2

T −1 ∼ M2
GC/M2

Pl,
where MGC is the typical scale of the model. Since exper-
imental bounds on the modification of the Newton law give
MGC " 10 MeV, one does not expect any significant effect on
the speed of GWs. On the other hand, in the case of Einstein-
aether [33] and Hořava gravity [34] cT is expected to deviate
from unity and the bound of GW170817 represents a severe
constraint on these models.

Disformal transformations.— So far, we have assumed that
matter is minimally coupled to the metric. There is no lack
of generality in this, provided there is a universal coupling
for all matter species, since one can always go to this frame
with a suitable conformal and disformal transformation. In
this frame the results of GW170817 imply that GWs must
travel on the lightcone of the metric. If one chooses to go
to a different disformal frame, both matter and GWs will ac-
quire a common disformal coupling: since they both travel at
the same speed, this is obviously still compatible with what
LIGO/Virgo observed. In the new frame, the gravitational ac-

tion will not be of the form (12) or (16). For example, one
can decide to disform the beyond Horndeski theories (12) to
become a Horndeski theory, but now both GWs and light will
not move on the geodesics of the metric.

Conclusion.— We have obtained the most general scalar-
tensor theories propagating a single scalar degree of freedom
compatible with the observation of GW170817. In Jordan
frame, the parameters of the EFT of Dark Energy of these
theories must satisfy eqs. (4), (5) and (6). Analogous rela-
tions must be imposed on the operators containing higher or-
der terms in δg00. The most general covariant theory is given
by eq. (16).

After GW170817, quartic and quintic Horndeski theories
are excluded, unless they reduce to a standard conformal cou-
pling to (4)R. Consequently, the cubic and quartic operators
of eq. (1) must be absent, which implies that the Vainshtein
mechanism allowed by them [19] cannot take place (screen-
ing must rely only on the cubic theories) and that no signatures
of these nonlinear operators should be found in the large scale
structures (see e.g. [35]). For beyond Horndeski theories, the
Vainshtein mechanism is broken inside compact bodies [20].
We leave for the future to study what consequence this has on
the theories (16).

The relations that need to be satisfied are technically natu-
ral, but it would be nice to investigate whether they can be de-
rived from some underlying symmetry. On the experimental
side further observations over a larger distance and at lower
frequencies will make the limits even more robust to Vain-
shtein screening and higher derivative corrections.
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