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Motivation

In�ation in the early universe can be described reasonably well by the
so-called two-�eld α-attractor models proposed by Linde, and which
have as scalar manifold the Poincaré disk.

We propose a wide generalization of these models, in the sense that:

we accept as scalar manifold (target space for the real scalar
�elds of the model) any hyperbolic surface which is
geometrically �nite and non-compact

we propose a general procedure for studying such models
through uniformization techniques and without using one-�eld
truncations.
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Introduction

In the standard cosmological framework, the early universe starts with a
period of very fast exponential expansion called in�ation (which explains
the homogeneity and isotropy observed today) and �nally it arrives to the
present slowly accelerating universe.

In�ationary models assume that the accelerated expansion of the universe
is due to one or more scalar �elds called in�atons whose potential energy
dominates the energy density of the Universe during the in�ationary period.
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Cosmological models

For realistic cosmological models there are certain conditions that need to
hold during the in�ationary stage, for example we need to ensure:

a nearly scale invariant spectrum of perturbations (ns ' 1)
a large enough number of e-folds N (generally of arround 50-60)

One-�eld α-attractor models provide a very good �t to the latest
observational results � almost independently of the choice of the in�aton
potential they lead to an in�ationary universe with the right values for ns

(the spectral index) and r (the tensor to scalar ratio).

The most studied α-atractor models are the one-�eld models, but there
are also multi-�eld models (based on the hyperbolic disk) that started to
be studied, both theoretically and numerically.

What makes these models more interesting is their geometric nature
because observational predictions of these models are mostly determined
by the geometry of the scalar manifold rather than the potential.
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Two-�eld α-attractor models

The two-�eld α-attractor models arise from cosmological solutions of
4-dimensional gravity coupled to a nonlinear sigma model whose target
space (scalar manifold) Σ is the Poincaré disk (the open unit disk endowed
with its unique complete metric G) of Gaussian curvature K(G) = − 1

3α
.

S [g , ϕ] =

∫
X

volg

[
− 1

2
R(g)− 1

2
Trgϕ

∗(G)− V ◦ ϕ
]

(1)

(X , g) is an oriented 4-dimensional Lorentzian manifold
R(g) is the scalar curvature of g
ϕ : X −→ Σ is a smooth map which locally describes two real scalar �elds
ϕ∗(G) is the pull-back through ϕ of the metric G
V : Σ→ R a smooth function (called the scalar potential)

Locally:

Trgϕ
∗(G) = gµνGαβ∂µϕα∂νϕβ , µ, ν = 0, . . . , 3 , α, β = 1, 2

(V ◦ ϕ)(xµ) = V (ϕ1(xµ), ϕ2(xµ))

Our generalized two-�eld α-attractor models are de�ned similarly, but with:

(Σ,G) any oriented, connected, borderless and non-compact 2-dimensional

Riemannian manifold with K(G) = − 1
3α

.
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Two-�eld α-attractor models with general target space

De�nition

The generalized two-�eld α-attractor model is de�ned by the triplet (Σ,G,V ),
where (Σ,G) is a complete hyperbolic surface with K(G) = − 1

3α
for α > 0,

while V : Σ→ R is a smooth potential function

Let:

X = R4 with global coordinates (t, x1, x2, x3)

ds2 = −dt2 + a(t)2
∑3

i=1 (dx i )2 ( FLRW metric )

ϕ = ϕ(t) (independent of x i )

The equations of motion reduce to:

ϕ̈+ 3Hϕ̇+ ∂ϕV = 0 (2)

Ḣ + 3H2 − V (ϕ) = 0 (3)

Ḣ +
ϕ̇2

2
= 0 (4)

where ˙ = d

dt
and:

H
def.
=

ȧ

a
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Conditions for in�ation

Assuming H(t) > 0, from (3) and (4) we get:

H(t) =
1√
6

√
ϕ̇(t)2 + 2V (ϕ(t)) (5)

The �rst slow roll parameter:

ε(t)
def.
= − Ḣ

H2
,

The conditions for in�ation (ȧ > 0 and ä > 0) are equivalent with:

0 < ε(t) < 1

which together with the e.o.m. imply:

H(t) <

√
V (ϕ(t))

2
≡ Hc(ϕ(t)) (6)

which gives the so-called in�ationary regions of a trajectory ϕ(t)

Using (3), (5) and (6) gives that in�ation happens when ϕ̇(t)2 < V (ϕ(t)) .
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Hyperbolic surfaces

A hyperbolic surface is a Riemannian surface, possibly non-compact, with
complete Riemannian metric G having Gaussian curvature K(G) = −1.

Simple non-compact examples:

Poincaré half-plane (H, ds2H) & Poincaré disk (D, ds2D)

(isometric with each other)

The Poincaré half-plane is the upper half-plane H def.
= {τ ∈ C| Imτ > 0}

endowed with its unique hyperbolic metric:

ds2H = λ2H(τ, τ̄)dτ2 with λH(τ, τ̄) =
1

Imτ
.

The group of orientation-preserving isometries of H is PSL(2,R), acting on H
through the Möbius transformation:

τ −→ Aτ =
aτ + b

cτ + d
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Uniformization of hyperbolic surfaces

The uniformization theorem (Poincaré - Koebe)

For any hyperbolic surface (Σ,G) there is a surface group Γ and a locally
isometric covering map (uniformization map) πH : H −→ Σ such that Σ ' H/Γ.

A surface group is a discrete subgroup Γ of PSL(2,R) without elliptic elements
(no A ∈ Γ for which |tr(A)| < 2).

How to use this theorem

To study the cosmological trajectories ϕ(t) : X −→ Σ on the hyperbolic
surface (Σ,G) it is convenient to �rst study their lifted trajectories ϕ̃(t) to H

ϕ̃(t) : X −→ H

and then to project them back to Σ

ϕ(t) = πH ◦ ϕ̃(t)
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Projecting back to Σ

The projection from H to Σ can be computed only if we know the
uniformization map πH explicitly or if we know the tiling of H determined by a
fundamental polygon of Γ.

Cosmological applications of these models generally require sophisticated
results from uniformization theory. For the special case of modular surfaces,
those results are closely connected to number theory.

Note: We don't view the lifted model as being physical, but just as a tool for
studying the original generalized α-atractor model de�ned by cosmological
solutions of the e.o.m.
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Fundamental polygons

Computing fundamental polygons

There is no fully general algorithm known for computing fundamental polygons
of surface groups. But a general algorithm is known for the case when Γ is an
arithmetic Fuchsian group such that H/Γ has �nite hyperbolic area.

Figure: A fundamental polygon on H (for the group Γ generated by τ → e lτ)

Figure: A fundamental polygon on H (for the modular group Γ(2))
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Types of ends

There are 4 types of ends: cusp ends, �aring (plane, horn and funnel) ends.

Figure: The elementary hyperbolic surfaces and the hyperbolic type of their ends.

Figure: A non-elementary hyperbolic surface.
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End compacti�cation versus conformal compacti�cation

Let Σ be homeomorphic with Σ̂ \ {p1, . . . , pn}, where Σ̂ is a borderless
compact oriented surface and p1, . . . , pn are a �nite number of distinct points .
Σ̂ can be identi�ed with the end compacti�cation of Σ.

The conformal compacti�cation Σ̄ of Σ (taken with respect to a complex
structure J on Σ) is the surface obtained by taking the closure of Σ inside Σ̂.

We call conformal boundary the topological boundary ∂∞Σ = Σ̄ \ Σ . It
consists of nc isolated points and nf disjoint closed curves, where nc + nf = n.

These two compacti�cations are conceptually important for understanding the
behavior of our models near the ends of Σ.

(Examples: The end compacti�cation of all elementary surfaces is S2, while for
the non-elementary surface on the previous page the end compacti�cation is
T 2.)
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Well-behaved scalar potentials

Let Σ̂ be the end compacti�cation of Σ.

A scalar potential V : Σ→ R is called well-behaved at an end p ∈ Σ̂ \ Σ if
there exists a smooth function V̂p : Σ t {p} → R such that V = V̂p|Σ .

The potential V is called globally well-behaved if there exists a globally-de�ned
smooth function V̂ : Σ̂→ R such that V = V̂ |Σ . Thus V is globally
well-behaved if it is well-behaved at each end of Σ.
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Geometrically-�nite hyperbolic surfaces

We shall concentrate on geometrically �nite hyperbolic surfaces.

Geometric �niteness

Let (Σ,G) be a hyperbolic surface uniformized by the surface group
Γ ⊂ PSL(2,R). One says that Γ and (Σ,G) are geometrically �nite i� any of
the following equivalent statements holds:

Γ admits a fundamental polygon with a �nite number of sides.

Γ (which is isomorphic with π1(Σ)) is �nitely-generated.

Σ ' H/Γ is topologically �nite (i.e. Σ has �nite Euler characteristic
χ(Σ) = 2− 2g − 2n, where g = genus, n = number of ends).

In particular, all elementary surfaces (i.e. the Poincare disk, hyperbolic
punctured disk and the hyperbolic annuli) are geometrically �nite.
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Two-�eld in�ation near the ends

In semi-geodesic coordinates in the neighborhood of an end p ∈ Σ̂ \ Σ, the
hyperbolic metric can be brought to the following explicit form:

ds2G ≈ 3α

[
dr2 +

(
Cp

4π

)2

e2εp rdθ2
]

where Cp and εp are known constants depending on the type of end (cusp,
funnel, plane or horn), so the e.o.m. in a vicinity of an end reduce to:

r̈ − 3εα

(
Cp

4π

)2

e2εp r θ̇2 + 3Hṙ +
1

3α
∂rV = 0 (7)

θ̈ + 2εp ṙ θ̇ + 3H θ̇ +
1

3α

(
4π

Cp

)2

e−2εp r∂θV = 0 (8)

The generic solution of this system has ṙ 6= 0 and θ̇ 6= 0, thus being a portion
of a spiral which �winds� around the ideal point.

Spiral trajectories near the ends

Since θ is periodic, a generic trajectory will spiral around the ends for any V
well-behaved at the ends.
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In�ation near the ends in the naive one-�eld truncation

Suppose that V is independent of θ in semigeodesic coordinates (r , θ) near
some end and that it has an asymptotic expansion:

V (r)|r�1 = V0

(
1− c e−r + O(e−2r )

)
where V0 > 0, c > 0.

Then the generalized α-attractor model admits a local naive truncation to a
one-�eld model, obtained by setting θ = constant.

Universal behavior near the ends

Lazaroiu & Shahbazi showed that: for a well-behaved scalar potential near the
ends, in the slow-roll approximation (ε� 1 ) in the naive one-�eld truncation
near the ends, all generalized two-�led α-attractor models lead to the same
values of ns and r:

ns ≈ 1− 2

N
, r ≈ 12

N2
(�tting the observational data)

where N
def.
=
∫ tf
t0

H(t)dt is the number of e-folds.
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Examples:models based on certain planar surfaces

For a planar surface, the end compacti�cation is the 2-sphere S2. We
considered the following examples of planar surfaces:

The elementary hyperbolic surfaces: the hyperbolic disk (already studied
before), the hyperbolic punctured disk and the hyperbolic annuli.

The hyperbolic triply-punctured sphere(=the modular curve Y (2)).

We choose certain scalar potentials V which are well-behaved on Σ̂ = S2, and
which have the following simple forms on Σ̂ in spherical coordinates:

V̂0(ψ, θ) = 1 + sinψ cos θ (9)

V̂+(ψ) = cos2
(
ψ

2

)
(10)

V̂−(ψ) = sin2
(
ψ

2

)
(11)

We analize examples of trajectories for Σ being D∗, A(R) and Y (2) for some
chosen initial conditions and for a �xed α = 1

3
.
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Example 1: the hyperbolic punctured disk D∗

The hyperbolic punctured disk is the punctured unit disk endowed with the
unique complete hyperbolic metric:

ds2 = λ2D∗(u, ū)|du|2 , where λD∗(u, ū) =
1

|u| log(1/|u|) (0 < |u| < 1) .

Here we have: Γ ' Z , the holomorphic covering map πH : H→ D∗ is given
by πH(τ) = e2πiτ , a fundamental polygon is DH = {τ ∈ H | 0 ≤ Re(τ) < 1}.

Choosing the globally well-behaved potential V̂0 given in (9), it takes the
following form in polar coordinates on D∗:

V0 = 1 +
2| log ρ|

1 + (log ρ)2
cos θ (u = ρe iθ)

and lifts to H as:

Ṽ0 = V0 ◦ πH = 1 +
4πy cos(2πx)

1 + 4π2y2

(since u = πH(τ) = e2πiτ and τ = x + iy)
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Choices of trajectories on H and D∗

Figure: Trajectories ϕ̃(t) on H and ϕ(t) on D∗ for the potential V̂0 and some chosen
initial conditions τ0 = x0 + iy0 and ṽ0 = ṽ0x + iṽ0y

Table 1. Initial conditions τ0 = x0 + iy0 and ṽ0 = ṽ0x + iṽ0y .
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Choices of trajectories on H and D∗

For the well-behaved potential V̂+, we have: V+ = 1
1+(log ρ)2

, Ṽ+ = 1
1+(2πy)2

.

Figure: Trajectories for the potential V̂+ on H and D∗ in the same initial condition

Figure: Example of trajectory with N=55.5 e-folds for the potential V̂+ on H and D∗.
Iinitial conditions τ0 = 0.001 + 0.0009i, ṽ0 = 0.
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Example 2: the hyperbolic annulus A(R)

The annulus:

A(R) = {u ∈ C | 1
R
≤ |u| ≤ R} (R > 1)

has the unique complete hyperbolic metric:

ds2 = |λR(u)|2|du|2 , where λR(u) =
π

2 logR

1

|u| cos
(
π log |u|
2 log R

) .

It is uniformized to H by the group Γ generated by τ → e`τ , where ` = π2

log R
.

The potential V̂0 takes the following form on A(R):

V0 = 1 +
2 log

R− 1
R

ρ− 1
R

1 +
(
log

R− 1
R

ρ− 1
R

)2 cos θ

and lifts to H as:

Ṽ0(τ) = 1 +
2 log

R− 1
R

ρ(τ)− 1
R

1 +
(
log

R− 1
R

ρ(τ)− 1
R

)2 cos

(
2π

`
log |τ |

)

where ρ(τ) = e
π2

`
− 4π2

`2
log |τ |
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Choices of trajectories on H and A(R)

Figure: Examples of trajectories for the potential V̂0 on H and A(R). The initial
conditions are as in Table 1, plus those for the green trajectory: τ0 = ie, ṽ0 = 1 + 10i.
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Choices of trajectories on H and A(R)

Figure: Examples of trajectories for the potential V̂+ on H and A(R) and the initial
conditions in Table 1.
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Example 3: the hyperbolic triply punctured sphere (the modular curve Y (2))

The triply punctured sphere Σ = Y (2)
def.
= CP1 \ {p1, p2, p3} endowed with the

hyperbolic metric:
ds2 = ρ(ζ, ζ̄)2dζ2 ,

where:

ρ(ζ, ζ̄) =
π

8|ζ(1− ζ)|
1

Re[K(ζ)K(1− ζ̄)]
, K(ζ) =

∫ 1

0

dt√
(1− t2)(1− ζt2)

Each of the three punctures corresponds to a cusp end.
Its end compacti�cation is Σ̂ = S2.
It is conformal to C \ {0, 1} .
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The hyperbolic triply punctured sphere

Y (2) is uniformized by the principal congruence subgroup of level 2:

Γ(2)
def.
=
{
A =

[
a b
c d

]
∈ PSL(2,Z) | a, d = odd , b, c = even

}
with uniformization map πH : H→ Y (2) given by the elliptic modular lambda
function:

πH(τ) ≡ λ(τ) =
℘τ ( 1+τ

2
)− ℘τ ( τ

2
)

℘τ ( 1
2

)− ℘τ ( τ
2

)

where ℘ is the Weierstrass elliptic function of modulus τ .
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Choices of trajectories on the hyperbolic triply punctured sphere

trajectory τ0 ṽ0
black 0.4 + 0.5i 0.3 + i

red 1.4 + 0.5i 0.1 + 0.2i

magenta 0.2 + 0.7i 0.7 + 0.5i

yellow 0.3 + 0.5i 0
orange 0.99 + 0.415i 0

Table 2. Initial conditions τ0 = x0 + iy0 and ṽ0 = ṽ0x + iṽ0y on H

For the potential V̂+ we have:

Figure: a) Level plots of the lifted potential Ṽ+ on H and some lifted trajectories with
initial conditions given in Table 2. b) Level plots of V+ on C \ {0, 1} and the
corresponding projected trajectories. c) The full orange trajectory on C \ {0, 1}.

Figure: Plot of H(t)/
√
M0 (black) and Hc (t)/

√
M0 (green) for the red, magenta,

yellow and orange trajectories for the potential Ṽ0.
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In�ationary regions

Figure: Plot of H(t) (black) and Hc (t) (green) for the red, yellow and orange

trajectories in the potential Ṽ+. The red and yellow trajectorie have small number of
e-folds (less than 2), but the orange trajectory has 50 e-folds.

Mirela E. Babalic (with C.I. Lazaroiu and C.S. Shahbazi) National Institute for Physics and Nuclear Engineering (NIPNE), BucharestGeneralized 2-�eld α-atractor models 29/34



Choices of trajectories on the hyperbolic triply punctured sphere

For the same initial conditions as in Table 2, but for the scalar potential V̂0

Figure: Level plof of Ṽ0 on H and V0 on Y (2). Trajectories on H and C \ {0, 1}.
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In�ationary regions

Figure: Plot of H(t) (black) and Hc (t) (green) for the magenta and red and yellow

trajectories in Ṽ0.
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Choices of trajectories on the hyperbolic triply punctured sphere

Trajectory with N = 56 efolds in potential Ṽ−

Figure: Trajectory on H and C \ {0, 1} with initial conditions on H: τ0 = 0.198 + 0.3i

and ṽ0 = 0. Plot of H(t) (black) and Hc (t) (green) for this blue trajectory.
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Conclusions and further directions

Conclusions:

We proposed a wide generalization of two-�eld α-attractor models
obtained by promoting the scalar manifold from the Poincaré disk to a
general geometrically-�nite non-compact hyperbolic surface.

Our generalized models are parameterized by a positive constant α, by the
choice of a surface group Γ ∈ PSL(2,R) and by the choice of a smooth
well-behaved scalar potential V .

We proposed a general procedure for studying such models through
uniformization techniques and without using one-�eld truncations.

We showed that such models have the same universal behavior as ordinary
α-attractors in a naive one-�eld truncation near each end, provided that
the scalar potential is well-behaved near that end.

On-going work (with L. Anguelova & C. I. Lazaroiu):

�nding more realistic potentials and trajectories, compatible with the
observational data and satisfying Noether symmetries.
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